Preprint FZJ-2025-01525

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Coherent information as a mixed-state topological order parameter of fermions

 ;  ;  ;

2025

This record in other databases:

Report No.: arXiv:2412.12279

Abstract: Quantum error correction protects quantum information against decoherence provided the noise strength remains below a critical threshold. This threshold marks the critical point for the decoding phase transition. Here we connect this transition in the toric code to a topological phase transition in disordered Majorana fermions at high temperatures. A quantum memory in the error correctable phase is captured by the presence of a Majorana zero mode, trapped in vortex defects associated with twisted boundary conditions. These results are established by expressing the coherent information, which measures the amount of recoverable quantum information in a given noisy code, in terms of a mixed-state topological order parameter of fermions. Our work hints at a broader connection of the robustness of quantum information in stabilizer codes and mixed-state topological phase transitions in symmetry protected fermion matter.


Note: 20 pages, 13+3 figures

Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
Research Program(s):
  1. 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) (POF4-522)

Appears in the scientific report 2025
Click to display QR Code for this record

The record appears in these collections:
Document types > Reports > Preprints
Institute Collections > PGI > PGI-2
Workflow collections > Public records
Publications database

 Record created 2025-01-31, last modified 2025-01-31


External link:
Download fulltext
Fulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)