001038540 001__ 1038540
001038540 005__ 20250131215341.0
001038540 0247_ $$2arXiv$$aarXiv:2412.12279
001038540 037__ $$aFZJ-2025-01525
001038540 088__ $$2arXiv$$aarXiv:2412.12279
001038540 1001_ $$0P:(DE-HGF)0$$aHuang, Ze-Min$$b0
001038540 245__ $$aCoherent information as a mixed-state topological order parameter of fermions
001038540 260__ $$c2025
001038540 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738313083_12724
001038540 3367_ $$2ORCID$$aWORKING_PAPER
001038540 3367_ $$028$$2EndNote$$aElectronic Article
001038540 3367_ $$2DRIVER$$apreprint
001038540 3367_ $$2BibTeX$$aARTICLE
001038540 3367_ $$2DataCite$$aOutput Types/Working Paper
001038540 500__ $$a20 pages, 13+3 figures
001038540 520__ $$aQuantum error correction protects quantum information against decoherence provided the noise strength remains below a critical threshold. This threshold marks the critical point for the decoding phase transition. Here we connect this transition in the toric code to a topological phase transition in disordered Majorana fermions at high temperatures. A quantum memory in the error correctable phase is captured by the presence of a Majorana zero mode, trapped in vortex defects associated with twisted boundary conditions. These results are established by expressing the coherent information, which measures the amount of recoverable quantum information in a given noisy code, in terms of a mixed-state topological order parameter of fermions. Our work hints at a broader connection of the robustness of quantum information in stabilizer codes and mixed-state topological phase transitions in symmetry protected fermion matter.
001038540 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038540 588__ $$aDataset connected to arXivarXiv
001038540 7001_ $$0P:(DE-HGF)0$$aColmenarez, Luis$$b1
001038540 7001_ $$0P:(DE-Juel1)204218$$aMüller, Markus$$b2$$eCorresponding author$$ufzj
001038540 7001_ $$0P:(DE-HGF)0$$aDiehl, Sebastian$$b3
001038540 909CO $$ooai:juser.fz-juelich.de:1038540$$pVDB
001038540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204218$$aForschungszentrum Jülich$$b2$$kFZJ
001038540 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038540 9141_ $$y2025
001038540 920__ $$lyes
001038540 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038540 980__ $$apreprint
001038540 980__ $$aVDB
001038540 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038540 980__ $$aUNRESTRICTED