Hauptseite > Publikationsdatenbank > Coherent information as a mixed-state topological order parameter of fermions > print |
001 | 1038540 | ||
005 | 20250131215341.0 | ||
024 | 7 | _ | |a arXiv:2412.12279 |2 arXiv |
037 | _ | _ | |a FZJ-2025-01525 |
088 | _ | _ | |a arXiv:2412.12279 |2 arXiv |
100 | 1 | _ | |a Huang, Ze-Min |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Coherent information as a mixed-state topological order parameter of fermions |
260 | _ | _ | |c 2025 |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1738313083_12724 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
500 | _ | _ | |a 20 pages, 13+3 figures |
520 | _ | _ | |a Quantum error correction protects quantum information against decoherence provided the noise strength remains below a critical threshold. This threshold marks the critical point for the decoding phase transition. Here we connect this transition in the toric code to a topological phase transition in disordered Majorana fermions at high temperatures. A quantum memory in the error correctable phase is captured by the presence of a Majorana zero mode, trapped in vortex defects associated with twisted boundary conditions. These results are established by expressing the coherent information, which measures the amount of recoverable quantum information in a given noisy code, in terms of a mixed-state topological order parameter of fermions. Our work hints at a broader connection of the robustness of quantum information in stabilizer codes and mixed-state topological phase transitions in symmetry protected fermion matter. |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to arXivarXiv |
700 | 1 | _ | |a Colmenarez, Luis |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Müller, Markus |0 P:(DE-Juel1)204218 |b 2 |e Corresponding author |u fzj |
700 | 1 | _ | |a Diehl, Sebastian |0 P:(DE-HGF)0 |b 3 |
909 | C | O | |o oai:juser.fz-juelich.de:1038540 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)204218 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
914 | 1 | _ | |y 2025 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|