001     1039470
005     20250414120449.0
024 7 _ |a 10.1109/ICECS61496.2024.10848531
|2 doi
024 7 _ |a WOS:001445799800001
|2 WOS
037 _ _ |a FZJ-2025-01764
041 _ _ |a English
100 1 _ |a Shamookh, M.
|0 P:(DE-Juel1)201575
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2024 31st IEEE International Conference on Electronics, Circuits and Systems (ICECS)
|c Nancy
|d 2024-11-18 - 2024-11-20
|w France
245 _ _ |a Design Optimization of High Voltage Generation for Memristor Electroforming in 28nm CMOS
260 _ _ |c 2024
|b IEEE
300 _ _ |a -
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1739459324_4289
|2 PUB:(DE-HGF)
520 _ _ |a The process of electroforming (EF) a memristor involves setting the channel resistance via current compliance Icc. This EF phase varies in duration based on the EF voltage VEF, requiring high voltage (HV) as a trade-off with EF time. To achieve CMOS-memristor scalable co-integration, on-chip HV-generation is essential. This study presents an analytical design approach for a proposed three-stage charge pump (CP), focusing on achieving optimal balance among efficiency, output ripple, Icc, and minimal capacitor. The proposed 28 nm three-stage CP requires 1.8 V IO devices for 3.35 V output voltage and achieves 46.5% voltage conversion ratio (VCR). It includes a ripple reduction stage to ensure a ripple below 6mV with high current demands of up to 200μA, without an additional space for over-voltage protection within the CP core. Corners and Monte Carlo simulations are conducted to validate the robustness of the design. By eliminating HV-transistors or multi-phase clocks, the design effectively reduces system costs, enhancing the efficiency and scalability of emerging neuromorphic systems.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Ashok, A.
|0 P:(DE-Juel1)176328
|b 1
|u fzj
700 1 _ |a Zambanini, A.
|0 P:(DE-Juel1)145837
|b 2
|u fzj
700 1 _ |a Gelaschus, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grewing, C.
|0 P:(DE-Juel1)159350
|b 4
|u fzj
700 1 _ |a Bahr, A.
|0 P:(DE-Juel1)157745
|b 5
700 1 _ |a van Waasen, S.
|0 P:(DE-Juel1)142562
|b 6
|u fzj
773 _ _ |a 10.1109/ICECS61496.2024.10848531
|y 2024
856 4 _ |u https://ieeexplore.ieee.org/abstract/document/10848531
856 4 _ |u https://juser.fz-juelich.de/record/1039470/files/Post%20Print.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1039470
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201575
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176328
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145837
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159350
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21