001039742 001__ 1039742
001039742 005__ 20250423082544.0
001039742 0247_ $$2arXiv$$aarXiv:2502.03314
001039742 037__ $$aFZJ-2025-01781
001039742 088__ $$2arXiv$$aarXiv:2502.03314
001039742 1001_ $$0P:(DE-HGF)0$$aTilgner, Niclas$$b0
001039742 245__ $$aReversible Switching of the Environment-Protected Quantum Spin Hall Insulator Bismuthene at the Graphene/SiC Interface
001039742 260__ $$c2025
001039742 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1739863383_1701
001039742 3367_ $$2ORCID$$aWORKING_PAPER
001039742 3367_ $$028$$2EndNote$$aElectronic Article
001039742 3367_ $$2DRIVER$$apreprint
001039742 3367_ $$2BibTeX$$aARTICLE
001039742 3367_ $$2DataCite$$aOutput Types/Working Paper
001039742 500__ $$a12 pages, 3 figures, supplementary information
001039742 520__ $$aQuantum Spin Hall Insulators (QSHI) have been extensively studied both theoretically and experimentally because they exhibit robust helical edge states driven by spin-orbit coupling and offer the potential for applications in spintronics through dissipationless spin transport. However, to realize devices, it is indispensable to gain control over the interaction of the active layer with the substrate, and to protect it from environmental influences. Here we show that a single layer of elemental Bi, formed by intercalation of an epitaxial graphene buffer layer on SiC(0001), is a promising candidate for a QSHI. This layer can be reversibly switched between an electronically inactive precursor state and a ``bismuthene state'', the latter exhibiting the predicted band structure of a true two-dimensional bismuthene layer. Switching is accomplished by hydrogenation (dehydrogenation) of the sample, i.e., a partial passivation (activation) of dangling bonds of the SiC substrate, causing a lateral shift of Bi atoms involving a change of the adsorption site. In the bismuthene state, the Bi honeycomb layer is a prospective QSHI, inherently protected by the graphene sheet above and the H-passivated substrate below. Thus, our results represent an important step towards protected QSHI systems beyond graphene.
001039742 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001039742 536__ $$0G:(GEPRIS)385975694$$aSFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)$$c385975694$$x1
001039742 588__ $$aDataset connected to arXivarXiv
001039742 7001_ $$0P:(DE-HGF)0$$aWolff, Susanne$$b1
001039742 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b2
001039742 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b3
001039742 7001_ $$0P:(DE-HGF)0$$aUnigarro, Andres David Peña$$b4
001039742 7001_ $$0P:(DE-HGF)0$$aGemming, Sibylle$$b5
001039742 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b6$$ufzj
001039742 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b7$$eCorresponding author$$ufzj
001039742 7001_ $$0P:(DE-HGF)0$$aSeyller, Thomas$$b8
001039742 7001_ $$0P:(DE-HGF)0$$aGöhler, Fabian$$b9$$eCorresponding author
001039742 7001_ $$0P:(DE-HGF)0$$aSchädlich, Philip$$b10$$eCorresponding author
001039742 773__ $$a10.48550/arXiv.2502.03314
001039742 909CO $$ooai:juser.fz-juelich.de:1039742$$pVDB
001039742 9141_ $$y2025
001039742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001039742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b6$$kFZJ
001039742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b7$$kFZJ
001039742 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001039742 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001039742 980__ $$apreprint
001039742 980__ $$aVDB
001039742 980__ $$aI:(DE-Juel1)PGI-3-20110106
001039742 980__ $$aUNRESTRICTED