001     1039742
005     20250423082544.0
024 7 _ |2 arXiv
|a arXiv:2502.03314
037 _ _ |a FZJ-2025-01781
088 _ _ |2 arXiv
|a arXiv:2502.03314
100 1 _ |0 P:(DE-HGF)0
|a Tilgner, Niclas
|b 0
245 _ _ |a Reversible Switching of the Environment-Protected Quantum Spin Hall Insulator Bismuthene at the Graphene/SiC Interface
260 _ _ |c 2025
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1739863383_1701
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
500 _ _ |a 12 pages, 3 figures, supplementary information
520 _ _ |a Quantum Spin Hall Insulators (QSHI) have been extensively studied both theoretically and experimentally because they exhibit robust helical edge states driven by spin-orbit coupling and offer the potential for applications in spintronics through dissipationless spin transport. However, to realize devices, it is indispensable to gain control over the interaction of the active layer with the substrate, and to protect it from environmental influences. Here we show that a single layer of elemental Bi, formed by intercalation of an epitaxial graphene buffer layer on SiC(0001), is a promising candidate for a QSHI. This layer can be reversibly switched between an electronically inactive precursor state and a ``bismuthene state'', the latter exhibiting the predicted band structure of a true two-dimensional bismuthene layer. Switching is accomplished by hydrogenation (dehydrogenation) of the sample, i.e., a partial passivation (activation) of dangling bonds of the SiC substrate, causing a lateral shift of Bi atoms involving a change of the adsorption site. In the bismuthene state, the Bi honeycomb layer is a prospective QSHI, inherently protected by the graphene sheet above and the H-passivated substrate below. Thus, our results represent an important step towards protected QSHI systems beyond graphene.
536 _ _ |0 G:(DE-HGF)POF4-5213
|a 5213 - Quantum Nanoscience (POF4-521)
|c POF4-521
|f POF IV
|x 0
536 _ _ |0 G:(GEPRIS)385975694
|a SFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)
|c 385975694
|x 1
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |0 P:(DE-HGF)0
|a Wolff, Susanne
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Soubatch, Serguei
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Lee, Tien-Lin
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Unigarro, Andres David Peña
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Gemming, Sibylle
|b 5
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F. Stefan
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)128774
|a Kumpf, Christian
|b 7
|e Corresponding author
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Seyller, Thomas
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Göhler, Fabian
|b 9
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Schädlich, Philip
|b 10
|e Corresponding author
773 _ _ |a 10.48550/arXiv.2502.03314
909 C O |o oai:juser.fz-juelich.de:1039742
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128774
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-521
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5213
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Quantum Materials
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21