001040453 001__ 1040453
001040453 005__ 20250310202434.0
001040453 037__ $$aFZJ-2025-01905
001040453 1001_ $$aXU, YIFAN$$b0
001040453 1112_ $$aDPG-Frühjahrstagung der Sektion Kondensierte Materie$$cCampus der Universität Regensburg$$d2025-03-16 - 2025-03-21$$gSKM$$wGermany
001040453 245__ $$aTemplate-Assisted Synthesis of Fe3O4 Nanodots for High-Density Resistive Switching Memory
001040453 260__ $$c2025
001040453 3367_ $$033$$2EndNote$$aConference Paper
001040453 3367_ $$2DataCite$$aOther
001040453 3367_ $$2BibTeX$$aINPROCEEDINGS
001040453 3367_ $$2DRIVER$$aconferenceObject
001040453 3367_ $$2ORCID$$aLECTURE_SPEECH
001040453 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1741601698_8049$$xInvited
001040453 520__ $$aThe growing demand for high-density memory solutions has driven the exploration of innovative fabrication techniques. We introduce a bottom-up approach for synthesizing ordered Fe3O4 nanodots for nanoscale resistive switching memory applications. Using anodic aluminum oxide (AAO) templates as masks, Fe3O4 nanodots on Nb:SrTiO3 substrate were fabricated via pulsed laser deposition. Scanning electron microscopy (SEM) confirms the nanodots’ uniformity. Grazing incidence X-ray scattering (GISAXS) reveals a high degree of long-range ordering. Magnetometry measurements show that the Verwey transition temperature (TV) and coercivity are preserved compared to continuous thin films. Conductive atomic force microscopy (cAFM) confirms well-defined nanodots using current maps. By sweeping the voltage on a single nanodot, set and reset processes are observed within ±2V.
001040453 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001040453 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001040453 7001_ $$0P:(DE-Juel1)184662$$aBEDNARSKI-MEINKE, CONNIE$$b1$$ufzj
001040453 7001_ $$aWANG, ERKAI$$b2
001040453 7001_ $$0P:(DE-Juel1)187095$$aQDEMAT, ASMAA$$b3$$ufzj
001040453 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b4
001040453 7001_ $$aGUNKEL, FELIX$$b5
001040453 7001_ $$aDITTMANN, REGINA$$b6
001040453 7001_ $$aLIU, YEN-PO$$b7
001040453 7001_ $$aPETRACIC, OLEG$$b8
001040453 7001_ $$0P:(DE-Juel1)169789$$aHussein, Mai$$b9
001040453 909CO $$ooai:juser.fz-juelich.de:1040453$$pVDB
001040453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184662$$aForschungszentrum Jülich$$b1$$kFZJ
001040453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187095$$aForschungszentrum Jülich$$b3$$kFZJ
001040453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b4$$kFZJ
001040453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169789$$aForschungszentrum Jülich$$b9$$kFZJ
001040453 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001040453 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001040453 9141_ $$y2025
001040453 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001040453 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001040453 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x2
001040453 980__ $$aconf
001040453 980__ $$aVDB
001040453 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001040453 980__ $$aI:(DE-82)080009_20140620
001040453 980__ $$aI:(DE-Juel1)PGI-7-20110106
001040453 980__ $$aUNRESTRICTED