Home > Publications database > Template-Assisted Synthesis of Fe3O4 Nanodots for High-Density Resistive Switching Memory |
Conference Presentation (Invited) | FZJ-2025-01905 |
; ; ; ; ; ; ; ; ;
2025
Abstract: The growing demand for high-density memory solutions has driven the exploration of innovative fabrication techniques. We introduce a bottom-up approach for synthesizing ordered Fe3O4 nanodots for nanoscale resistive switching memory applications. Using anodic aluminum oxide (AAO) templates as masks, Fe3O4 nanodots on Nb:SrTiO3 substrate were fabricated via pulsed laser deposition. Scanning electron microscopy (SEM) confirms the nanodots’ uniformity. Grazing incidence X-ray scattering (GISAXS) reveals a high degree of long-range ordering. Magnetometry measurements show that the Verwey transition temperature (TV) and coercivity are preserved compared to continuous thin films. Conductive atomic force microscopy (cAFM) confirms well-defined nanodots using current maps. By sweeping the voltage on a single nanodot, set and reset processes are observed within ±2V.
![]() |
The record appears in these collections: |