001040664 001__ 1040664
001040664 005__ 20250423154808.0
001040664 0247_ $$2doi$$a10.1080/00268976.2025.2472020
001040664 037__ $$aFZJ-2025-01995
001040664 041__ $$aEnglish
001040664 082__ $$a530
001040664 1001_ $$0P:(DE-HGF)0$$ajochum$$b0
001040664 245__ $$aSelf-organization of planar and tripod-shaped DNA stars confined to the water-air interface
001040664 260__ $$aLondon$$bTaylor & Francis$$c2025
001040664 3367_ $$2DRIVER$$aarticle
001040664 3367_ $$2DataCite$$aOutput Types/Journal article
001040664 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745415990_3131
001040664 3367_ $$2BibTeX$$aARTICLE
001040664 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040664 3367_ $$00$$2EndNote$$aJournal Article
001040664 500__ $$aBitte Post-print ergänzen
001040664 520__ $$aUsing molecular dynamic simulations of coarse-grained models, we study the self-organisation of star-shaped all-DNA constructs, composed of suitably intertwined single-stranded DNA chains, confined to water–air interface. Two configurations of DNA stars are considered: planar and tripod with respect to whether the entire star is fixed to an interface or only its terminating nucleotides, while the rest is allowed to dive into a water where high concentration of monovalent salt is dissolved. Calculated structural properties of the solutions they form as well as their dynamical features, investigated in a range from low- to intermediate densities, reveal that both systems stay in liquid state maintaining remarkably similar properties despite striking differences in the conformation of the composing molecules.
001040664 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001040664 7001_ $$0P:(DE-HGF)0$$aAdzic, N.$$b1$$eCorresponding author
001040664 7001_ $$0P:(DE-Juel1)130987$$aStiakakis, Emmanuel$$b2
001040664 7001_ $$0P:(DE-HGF)0$$aG, kahl$$b3
001040664 7001_ $$0P:(DE-HGF)0$$aLIkos, C. N.$$b4
001040664 773__ $$0PERI:(DE-600)1491083-4$$a10.1080/00268976.2025.2472020$$pe2472020$$tMolecular physics$$vxx$$x0026-8976$$y2025
001040664 8564_ $$uhttps://juser.fz-juelich.de/record/1040664/files/manuscript_revised.pdf
001040664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130987$$aForschungszentrum Jülich$$b2$$kFZJ
001040664 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001040664 9141_ $$y2025
001040664 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001040664 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL PHYS : 2022$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001040664 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001040664 920__ $$lno
001040664 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001040664 980__ $$ajournal
001040664 980__ $$aEDITORS
001040664 980__ $$aVDBINPRINT
001040664 980__ $$aI:(DE-Juel1)IBI-4-20200312
001040664 980__ $$aUNRESTRICTED