001     1040881
005     20250804115212.0
024 7 _ |a 10.1016/j.jmrt.2025.03.128
|2 doi
024 7 _ |a 2238-7854
|2 ISSN
024 7 _ |a 2214-0697
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02034
|2 datacite_doi
024 7 _ |a WOS:001452156600001
|2 WOS
037 _ _ |a FZJ-2025-02034
082 _ _ |a 670
100 1 _ |a Sergeev, D.
|0 P:(DE-Juel1)159377
|b 0
|e Corresponding author
245 _ _ |a Comprehensive analysis of thermophysical properties of the NaNO3–KNO3 mixture with metastable phases
260 _ _ |a Rio de Janeiro
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750763777_12895
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study focuses on the comprehensive analysis of the NaNO3-KNO3 system, a salt mixture that is extensively used as a heat transfer fluid and thermal energy storage material in concentrated solar power (CSP) plants. Despite its common application, discrepancies exist in the reported equilibrium phase diagrams, largely due to the formation of metastable phases influenced by experimental conditions. This work combines various thermophysical methods, including differential scanning calorimetry, thermomechanical analysis, laser flash analysis, and high-temperature X-ray diffraction, to resolve these discrepancies. The thermal and structural properties of a 50 mol % NaNO3 – 50 mol % KNO3 mixture have been determined. Significant differences in phase transition temperatures and volume were observed between the first and second heating cycles. In-situ HTXRD confirmed the formation of metastable solid solution phases upon cooling to room temperature after the first heating. The comprehensive analysis provided insights into the equilibrium and metastable states of the mixture, highlighting the importance of combining thermal analysis techniques with XRD for a thorough characterization of material properties.
536 _ _ |a 1243 - Thermal Energy Storage (POF4-124)
|0 G:(DE-HGF)POF4-1243
|c POF4-124
|f POF IV
|x 0
536 _ _ |a BMWK 01GW0623 - Verbundvorhaben: PCM-Screening-2 - Evaluierung von Salzsystemen für den Einsatz als PCM: thermodynamische Modellierung und experimentelle Methoden - 2; Teilvorhaben: Thermochemie wasserfreier Salzsysteme für PCM (01GW0623)
|0 G:(BMWK)01GW0623
|c 01GW0623
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Nénert, G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rapp, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Beckstein, F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schöneich, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller, M.
|0 P:(DE-Juel1)129765
|b 5
700 1 _ |a Gertenbach, J.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.jmrt.2025.03.128
|g Vol. 36, p. 561 - 569
|0 PERI:(DE-600)2732709-7
|p 561 - 569
|t Journal of materials research and technology
|v 36
|y 2025
|x 2238-7854
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1040881/files/1-s2.0-S2238785425006386-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1040881/files/Manuskript.pdf
909 C O |o oai:juser.fz-juelich.de:1040881
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1243
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-01
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER RES TECHNOL : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-01T16:30:52Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-01T16:30:52Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-01T16:30:52Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER RES TECHNOL : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-1-20101013
|k IMD-1
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-1-20101013
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21