001041314 001__ 1041314 001041314 005__ 20250414120450.0 001041314 0247_ $$2doi$$a10.1016/j.expneurol.2025.115180 001041314 0247_ $$2ISSN$$a0014-4886 001041314 0247_ $$2ISSN$$a1090-2430 001041314 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02213 001041314 0247_ $$2pmid$$a39914643 001041314 0247_ $$2WOS$$aWOS:001426315600001 001041314 037__ $$aFZJ-2025-02213 001041314 082__ $$a610 001041314 1001_ $$0P:(DE-HGF)0$$aKalantari, Aref$$b0 001041314 245__ $$aProportional recovery in mice with cortical stroke 001041314 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025 001041314 3367_ $$2DRIVER$$aarticle 001041314 3367_ $$2DataCite$$aOutput Types/Journal article 001041314 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744285598_30327 001041314 3367_ $$2BibTeX$$aARTICLE 001041314 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001041314 3367_ $$00$$2EndNote$$aJournal Article 001041314 500__ $$aThis work was funded by the Friebe Foundation (T0498/28960/16) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 431549029 – SFB 1451. 001041314 520__ $$aacute stroke patients. However, it still needs to be explored whether the same concept applies to preclinical, i.e.animal models of stroke recovery. To address this question, we investigated behavioral data from 125 adult maleC57Bl/6 J mice with photothrombotic strokes in the sensorimotor cortex. Lesion size and location were determinedin the first week using in vivo T2-weighted MRI. Motor recovery was evaluated repeatedly over four weeksusing the cylinder, grid walk, and rotating beam test. Recovery trajectories were analyzed using a newlyformulated Mouse Recovery Rule (MRR), comparing it against the traditional PRR. Initial findings indicatedvariable recovery patterns, which were separated using a stepwise linear regression approach resulting in twoclusters: 47 % PRR and 53 % MRR. No significant correlation was found between recovery patterns and lesionsize or location, suggesting that other biological factors drive individual differences in recovery. Of note, in theMRR cluster, animals recovered to 90 % of their initial behavioral state within the first four weeks post-stroke,which is higher than the 70 % recovery usually reported in human PRR studies. This study demonstrates thecomplexity of translating the PRR to stroke recovery models in mice and underscores the need for species-specificrecovery models. Our findings have implications for designing and interpreting therapeutic strategies for strokerecovery in preclinical settings, with the potential to improve the predictive accuracy of stroke recoveryassessments. 001041314 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001041314 536__ $$0G:(GEPRIS)431549029$$aDFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1 001041314 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001041314 7001_ $$0P:(DE-HGF)0$$aHambrock, Carolin$$b1 001041314 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b2 001041314 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b3$$ufzj 001041314 7001_ $$0P:(DE-Juel1)196051$$aAswendt, Markus$$b4$$eCorresponding author 001041314 773__ $$0PERI:(DE-600)1466932-8$$a10.1016/j.expneurol.2025.115180$$gVol. 386, p. 115180 -$$p115180 -$$tExperimental neurology$$v386$$x0014-4886$$y2025 001041314 8564_ $$uhttps://juser.fz-juelich.de/record/1041314/files/PDF.pdf$$yOpenAccess 001041314 909CO $$ooai:juser.fz-juelich.de:1041314$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001041314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b3$$kFZJ 001041314 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001041314 9141_ $$y2025 001041314 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP NEUROL : 2022$$d2024-12-31 001041314 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 001041314 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001041314 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEXP NEUROL : 2022$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31 001041314 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-31$$wger 001041314 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31 001041314 920__ $$lyes 001041314 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 001041314 980__ $$ajournal 001041314 980__ $$aVDB 001041314 980__ $$aUNRESTRICTED 001041314 980__ $$aI:(DE-Juel1)INM-3-20090406 001041314 9801_ $$aFullTexts