001     1041314
005     20250414120450.0
024 7 _ |a 10.1016/j.expneurol.2025.115180
|2 doi
024 7 _ |a 0014-4886
|2 ISSN
024 7 _ |a 1090-2430
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02213
|2 datacite_doi
024 7 _ |a 39914643
|2 pmid
024 7 _ |a WOS:001426315600001
|2 WOS
037 _ _ |a FZJ-2025-02213
082 _ _ |a 610
100 1 _ |a Kalantari, Aref
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Proportional recovery in mice with cortical stroke
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744285598_30327
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was funded by the Friebe Foundation (T0498/28960/16) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 431549029 – SFB 1451.
520 _ _ |a acute stroke patients. However, it still needs to be explored whether the same concept applies to preclinical, i.e.animal models of stroke recovery. To address this question, we investigated behavioral data from 125 adult maleC57Bl/6 J mice with photothrombotic strokes in the sensorimotor cortex. Lesion size and location were determinedin the first week using in vivo T2-weighted MRI. Motor recovery was evaluated repeatedly over four weeksusing the cylinder, grid walk, and rotating beam test. Recovery trajectories were analyzed using a newlyformulated Mouse Recovery Rule (MRR), comparing it against the traditional PRR. Initial findings indicatedvariable recovery patterns, which were separated using a stepwise linear regression approach resulting in twoclusters: 47 % PRR and 53 % MRR. No significant correlation was found between recovery patterns and lesionsize or location, suggesting that other biological factors drive individual differences in recovery. Of note, in theMRR cluster, animals recovered to 90 % of their initial behavioral state within the first four weeks post-stroke,which is higher than the 70 % recovery usually reported in human PRR studies. This study demonstrates thecomplexity of translating the PRR to stroke recovery models in mice and underscores the need for species-specificrecovery models. Our findings have implications for designing and interpreting therapeutic strategies for strokerecovery in preclinical settings, with the potential to improve the predictive accuracy of stroke recoveryassessments.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)
|0 G:(GEPRIS)431549029
|c 431549029
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hambrock, Carolin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 2
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 3
|u fzj
700 1 _ |a Aswendt, Markus
|0 P:(DE-Juel1)196051
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.expneurol.2025.115180
|g Vol. 386, p. 115180 -
|0 PERI:(DE-600)1466932-8
|p 115180 -
|t Experimental neurology
|v 386
|y 2025
|x 0014-4886
856 4 _ |u https://juser.fz-juelich.de/record/1041314/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041314
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131720
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EXP NEUROL : 2022
|d 2024-12-31
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EXP NEUROL : 2022
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21