001     1041428
005     20250414120447.0
024 7 _ |a 10.1103/PhysRevB.111.165402
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02241
|2 datacite_doi
024 7 _ |a WOS:001460182600007
|2 WOS
037 _ _ |a FZJ-2025-02241
082 _ _ |a 530
100 1 _ |a Haags, Anja
|0 P:(DE-Juel1)174294
|b 0
|e First author
245 _ _ |a Tomographic identification of all molecular orbitals in a wide binding-energy range
260 _ _ |a Woodbury, NY
|c 2025
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744283607_3251
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the past decade, photoemission orbital tomography (POT) has evolved into a powerful tool to investigate the electronic structure of organic molecules adsorbed on surfaces. Here we show that POT allows for the comprehensive experimental identification of all molecular orbitals in a substantial binding energy range of more than 10 eV. Making use of the angular distribution of photoelectrons as a function of binding-energy, we exemplify this by extracting an orbital-resolved projected density of states for 15 𝜋 and 23 𝜎 orbitals from the experimental data of the prototypical organic molecule bisanthene (C28⁢H14) on a Cu(110) surface. These experimental results for an essentially complete set of orbitals within the given binding-energy range serve as stringent benchmarks for electronic structure methods, which we illustrate by performing density functional calculations employing four frequently used exchange-correlation functionals. By computing the respective molecular-orbital-projected densities of states, a one-to-one comparison with experimental data for an unprecedented number of 38 orbital energies became possible. The quantitative analysis of our data reveals that the range-separated hybrid functional HSE performs best for the investigated organic/metal interface. At a more fundamental level, the remarkable agreement between the experimental and the Kohn-Sham orbital energies over a binding-energy range larger than 10 eV suggests that—perhaps unexpectedly—Kohn-Sham orbitals approximate Dyson orbitals, which would rigorously account for the electron extraction process in photoemission spectroscopy but are notoriously difficult to compute, in a much better way than previously thought.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
536 _ _ |a Orbital Cinema - Photoemission Orbital Cinematography: An ultrafast wave function lab (101071259)
|0 G:(EU-Grant)101071259
|c 101071259
|f ERC-2022-SYG
|x 1
536 _ _ |a SFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)
|0 G:(GEPRIS)385975694
|c 385975694
|x 2
536 _ _ |a CM3 - Controlled Mechanical Manipulation of Molecules (757634)
|0 G:(EU-Grant)757634
|c 757634
|f ERC-2017-STG
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Brandstetter, Dominik
|0 0000-0002-0434-1289
|b 1
700 1 _ |a Yang, Xiaosheng
|0 P:(DE-Juel1)165181
|b 2
700 1 _ |a Egger, Larissa
|0 0000-0001-6723-9110
|b 3
700 1 _ |a Kirschner, Hans
|0 0000-0003-0489-928X
|b 4
700 1 _ |a Gottwald, Alexander
|0 0000-0003-2810-7419
|b 5
700 1 _ |a Richter, Mathias
|0 0000-0001-8252-8869
|b 6
700 1 _ |a Koller, Georg
|0 0000-0001-7741-2394
|b 7
700 1 _ |a Bocquet, François C.
|0 P:(DE-Juel1)167128
|b 8
700 1 _ |a Wagner, Christian
|0 P:(DE-Juel1)140276
|b 9
700 1 _ |a Ramsey, Michael G.
|0 0000-0003-0523-1994
|b 10
700 1 _ |a Soubatch, Serguei
|0 P:(DE-Juel1)128790
|b 11
700 1 _ |a Puschnig, Peter
|0 0000-0002-8057-7795
|b 12
|e Corresponding author
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 13
|e Last author
773 _ _ |a 10.1103/PhysRevB.111.165402
|g Vol. 111, no. 16, p. 165402
|0 PERI:(DE-600)2844160-6
|n 16
|p 165402
|t Physical review / B
|v 111
|y 2025
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/1041428/files/PhysRevB.111.165402.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041428
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174294
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-0434-1289
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165181
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0001-6723-9110
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0003-0489-928X
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0003-2810-7419
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0001-8252-8869
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0001-7741-2394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)167128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)140276
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 0000-0003-0523-1994
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128790
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 0000-0002-8057-7795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21