001041612 001__ 1041612
001041612 005__ 20250424202216.0
001041612 0247_ $$2doi$$a10.48550/ARXIV.1809.07958
001041612 037__ $$aFZJ-2025-02346
001041612 1001_ $$0P:(DE-HGF)0$$aBocquet, F. C.$$b0$$eCorresponding author
001041612 245__ $$aSurfactant-Mediated Epitaxial Growth of Single-Layer Graphene in an Unconventional Orientation on SiC
001041612 260__ $$barXiv$$c2018
001041612 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745495514_9275
001041612 3367_ $$2ORCID$$aWORKING_PAPER
001041612 3367_ $$028$$2EndNote$$aElectronic Article
001041612 3367_ $$2DRIVER$$apreprint
001041612 3367_ $$2BibTeX$$aARTICLE
001041612 3367_ $$2DataCite$$aOutput Types/Working Paper
001041612 500__ $$aPoF III period
001041612 520__ $$aWe report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely $R0^\circ$ rotation with respect to the SiC lattice. It yields a very high-quality single-layer graphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a pre-oriented template to induce the unconventional orientation. Using spot profile analysis low energy electron diffraction, angle-resolved photoelectron spectroscopy, and the normal incidence x-ray standing wave technique, we assess the crystalline quality and coverage of the graphene layer. Combined with the presence of a covalently-bound graphene layer in the conventional orientation underneath, our surfactant-mediated growth offers an ideal platform to prepare epitaxial twisted bilayer graphene via intercalation.
001041612 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041612 588__ $$aDataset connected to DataCite
001041612 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001041612 650_7 $$2Other$$aFOS: Physical sciences
001041612 7001_ $$0P:(DE-Juel1)173990$$aLin, Y. -R.$$b1
001041612 7001_ $$0P:(DE-HGF)0$$aFranke, M.$$b2
001041612 7001_ $$0P:(DE-Juel1)169639$$aSamiseresht, N.$$b3
001041612 7001_ $$0P:(DE-HGF)0$$aParhizkar, S.$$b4
001041612 7001_ $$0P:(DE-HGF)0$$aSoubatch, S.$$b5
001041612 7001_ $$0P:(DE-Juel1)208739$$aLee, T. -L.$$b6$$ufzj
001041612 7001_ $$0P:(DE-Juel1)128774$$aKumpf, C.$$b7$$ufzj
001041612 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. S.$$b8$$ufzj
001041612 773__ $$a10.48550/ARXIV.1809.07958
001041612 8564_ $$uhttps://arxiv.org/abs/1809.07958
001041612 909CO $$ooai:juser.fz-juelich.de:1041612$$pVDB
001041612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001041612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001041612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
001041612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
001041612 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)208739$$aExternal Institute$$b6$$kExtern
001041612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b7$$kFZJ
001041612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
001041612 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041612 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041612 980__ $$apreprint
001041612 980__ $$aVDB
001041612 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041612 980__ $$aUNRESTRICTED