001     1041612
005     20250424202216.0
024 7 _ |a 10.48550/ARXIV.1809.07958
|2 doi
037 _ _ |a FZJ-2025-02346
100 1 _ |a Bocquet, F. C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Surfactant-Mediated Epitaxial Growth of Single-Layer Graphene in an Unconventional Orientation on SiC
260 _ _ |c 2018
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745495514_9275
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a PoF III period
520 _ _ |a We report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely $R0^\circ$ rotation with respect to the SiC lattice. It yields a very high-quality single-layer graphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a pre-oriented template to induce the unconventional orientation. Using spot profile analysis low energy electron diffraction, angle-resolved photoelectron spectroscopy, and the normal incidence x-ray standing wave technique, we assess the crystalline quality and coverage of the graphene layer. Combined with the presence of a covalently-bound graphene layer in the conventional orientation underneath, our surfactant-mediated growth offers an ideal platform to prepare epitaxial twisted bilayer graphene via intercalation.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Materials Science (cond-mat.mtrl-sci)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Lin, Y. -R.
|0 P:(DE-Juel1)173990
|b 1
700 1 _ |a Franke, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Samiseresht, N.
|0 P:(DE-Juel1)169639
|b 3
700 1 _ |a Parhizkar, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Soubatch, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lee, T. -L.
|0 P:(DE-Juel1)208739
|b 6
|u fzj
700 1 _ |a Kumpf, C.
|0 P:(DE-Juel1)128774
|b 7
|u fzj
700 1 _ |a Tautz, F. S.
|0 P:(DE-Juel1)128791
|b 8
|u fzj
773 _ _ |a 10.48550/ARXIV.1809.07958
856 4 _ |u https://arxiv.org/abs/1809.07958
909 C O |o oai:juser.fz-juelich.de:1041612
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-Juel1)208739
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21