001041700 001__ 1041700
001041700 005__ 20250512115735.0
001041700 0247_ $$2doi$$a10.1002/advs.202416838
001041700 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02387
001041700 0247_ $$2pmid$$a39985275
001041700 0247_ $$2WOS$$aWOS:001427483100001
001041700 037__ $$aFZJ-2025-02387
001041700 041__ $$aEnglish
001041700 082__ $$a624
001041700 1001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b0
001041700 245__ $$aFundamentals and Applications of Dual‐Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization
001041700 260__ $$aWeinheim$$bWiley-VCH$$c2025
001041700 3367_ $$2DRIVER$$aarticle
001041700 3367_ $$2DataCite$$aOutput Types/Journal article
001041700 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1746017273_7676
001041700 3367_ $$2BibTeX$$aARTICLE
001041700 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041700 3367_ $$00$$2EndNote$$aJournal Article
001041700 500__ $$aOpen access
001041700 520__ $$aSuperparamagnetic nanoparticles (MNP) offer exciting applications for engineering and biomedicine in imaging, diagnostics, and therapy upon magnetic excitation. Specifically, if excited at two distinct frequencies f1 and f2, MNP responds with magnetic intermodulation frequencies m·f1 ± n·f2 caused by their nonlinear magnetization. These mixing frequencies are highly specific for MNP properties, uniquely characterizing their presence. In this review, the fundamentals of frequency mixing magnetic detection (FMMD) as a special case of magnetic particle spectroscopy (MPS) are reviewed, elaborating its functional principle that enables a large dynamic range of detection of MNP. Mathematical descriptions derived from Langevin modeling and micromagnetic Monte-Carlo simulations show matching predictions. The latest applications of FMMD in nanomaterials characterization as well as diagnostic and therapeutic biomedicine are highlighted: analysis of the phase of the FMMD signal characterizes the magnetic relaxation of MNP, allowing to determine hydrodynamic size and binding state. Variation of excitation amplitudes or magnetic offset fields enables determining the size distribution of the particles’ magnetic cores. This permits multiplex detection of polydisperse MNP in magnetic immunoassays, realized successfully for various biomolecular targets such as viruses, bacteria, proteins, and toxins. A portable magnetic reader enables portable immunodetection at point-of-care. Future applications toward theranostics are summarized and elaborated.
001041700 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001041700 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041700 7001_ $$00000-0001-9250-1686$$aEngelmann, Ulrich M.$$b1$$eCorresponding author
001041700 773__ $$0PERI:(DE-600)2808093-2$$a10.1002/advs.202416838$$gVol. 12, no. 13, p. 2416838$$n13$$p2416838$$tAdvanced science$$v12$$x2198-3844$$y2025
001041700 8564_ $$uhttps://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202416838
001041700 8564_ $$uhttps://juser.fz-juelich.de/record/1041700/files/Advanced%20Science%20-%202025%20-%20Krause%20-%20Fundamentals%20and%20Applications%20of%20Dual%E2%80%90Frequency%20Magnetic%20Particle%20Spectroscopy%20Review.pdf$$yOpenAccess
001041700 909CO $$ooai:juser.fz-juelich.de:1041700$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001041700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b0$$kFZJ
001041700 9101_ $$0I:(DE-HGF)0$$60000-0001-9250-1686$$a Fachhochschule Aachen$$b1
001041700 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001041700 9141_ $$y2025
001041700 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
001041700 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001041700 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV SCI : 2022$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV SCI : 2022$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-05$$wger
001041700 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:05:31Z
001041700 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:05:31Z
001041700 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041700 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001041700 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001041700 920__ $$lyes
001041700 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001041700 980__ $$ajournal
001041700 980__ $$aVDB
001041700 980__ $$aUNRESTRICTED
001041700 980__ $$aI:(DE-Juel1)IBI-3-20200312
001041700 9801_ $$aFullTexts