Poster (Invited) FZJ-2025-02405

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
FairDen: Fair Density-Based Clustering

 ;  ;  ;  ;

2025

The Thirteenth International Conference on Learning Representations, ICLR2025, SingaporeSingapore, Singapore, 24 Apr 2025 - 28 Apr 20252025-04-242025-04-28

Abstract: Fairness in data mining tasks like clustering has recently become an increasinglyimportant aspect. However, few clustering algorithms exist that focus on fairgroupings of data with sensitive attributes. Including fairness in the clusteringobjective is especially hard for density-based clustering, as it does not directlyoptimize a closed form objective like centroid-based or spectral methods.This paper introduces FairDen, the first fair, density-based clustering algorithm.We capture the dataset’s density-connectivity structure in a similarity matrix thatwe manipulate to encourage a balanced clustering. In contrast to state-of-theart, FairDen inherently handles categorical attributes, noise, and data with severalsensitive attributes or groups. We show that FairDen finds meaningful and fairclusters in extensive experiments.


Contributing Institute(s):
  1. Datenanalyse und Maschinenlernen (IAS-8)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2025
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Poster
Institutssammlungen > IAS > IAS-8
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2025-05-05, letzte Änderung am 2025-12-17


Restricted:
Volltext herunterladen PNG
Externer link:
Volltext herunterladenVolltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)