001042314 001__ 1042314
001042314 005__ 20250610131446.0
001042314 0247_ $$2doi$$a10.1021/acs.nanolett.4c05855
001042314 0247_ $$2ISSN$$a1530-6984
001042314 0247_ $$2ISSN$$a1530-6992
001042314 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02521
001042314 0247_ $$2pmid$$a40223210
001042314 0247_ $$2WOS$$aWOS:001466589400001
001042314 037__ $$aFZJ-2025-02521
001042314 082__ $$a660
001042314 1001_ $$0P:(DE-HGF)0$$aHan, Yi$$b0
001042314 245__ $$aAn Energy Efficient Memory Cell for Quantum and Neuromorphic Computing at Low Temperatures
001042314 260__ $$aWashington, DC$$bACS Publ.$$c2025
001042314 3367_ $$2DRIVER$$aarticle
001042314 3367_ $$2DataCite$$aOutput Types/Journal article
001042314 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748424730_26423
001042314 3367_ $$2BibTeX$$aARTICLE
001042314 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042314 3367_ $$00$$2EndNote$$aJournal Article
001042314 520__ $$aEfficient computing in cryogenic environments, including classical von Neumann, quantum, and neuromorphic systems, is poised to transform big data processing. The quest for high-density, energy-efficient memories continues, with cryogenic memory solutions still unclear. We present a Cryogenic Capacitorless Random Access Memory (C2RAM) cell using advanced Si technology, which enhances storage density through its scalability and multistate capability. Remarkably, the C2RAM maintains data for over a decade with its extended retention times and offers potential as an artificial synapse. This positions C2RAM as an ideal nonvolatile memory candidate for cryogenic computing applications and emerging quantum technologies.
001042314 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001042314 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042314 7001_ $$0P:(DE-Juel1)186864$$aSun, Jingxuan$$b1$$ufzj
001042314 7001_ $$0P:(DE-HGF)0$$aRichstein, Benjamin$$b2
001042314 7001_ $$0P:(DE-Juel1)188135$$aGrenmyr, Andreas$$b3$$ufzj
001042314 7001_ $$0P:(DE-Juel1)177006$$aBae, Jin-Hee$$b4$$ufzj
001042314 7001_ $$0P:(DE-HGF)0$$aAllibert, Frederic$$b5
001042314 7001_ $$0P:(DE-HGF)0$$aRadu, Ionut$$b6
001042314 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7$$ufzj
001042314 7001_ $$0P:(DE-HGF)0$$aKnoch, Joachim$$b8
001042314 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b9$$eCorresponding author
001042314 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.4c05855$$gVol. 25, no. 16, p. 6374 - 6381$$n16$$p6374 - 6381$$tNano letters$$v25$$x1530-6984$$y2025
001042314 8564_ $$uhttps://juser.fz-juelich.de/record/1042314/files/han-et-al-2025-an-energy-efficient-memory-cell-for-quantum-and-neuromorphic-computing-at-low-temperatures.pdf$$yOpenAccess
001042314 8767_ $$d2025-05-12$$eHybrid-OA$$jPublish and Read
001042314 909CO $$ooai:juser.fz-juelich.de:1042314$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001042314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001042314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186864$$aForschungszentrum Jülich$$b1$$kFZJ
001042314 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
001042314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188135$$aForschungszentrum Jülich$$b3$$kFZJ
001042314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b4$$kFZJ
001042314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
001042314 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH
001042314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b9$$kFZJ
001042314 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001042314 9141_ $$y2025
001042314 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001042314 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001042314 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001042314 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042314 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042314 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001042314 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001042314 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001042314 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001042314 980__ $$ajournal
001042314 980__ $$aVDB
001042314 980__ $$aUNRESTRICTED
001042314 980__ $$aI:(DE-Juel1)PGI-9-20110106
001042314 980__ $$aI:(DE-82)080009_20140620
001042314 980__ $$aAPC
001042314 9801_ $$aAPC
001042314 9801_ $$aFullTexts