001     1042314
005     20250610131446.0
024 7 _ |a 10.1021/acs.nanolett.4c05855
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02521
|2 datacite_doi
024 7 _ |a 40223210
|2 pmid
024 7 _ |a WOS:001466589400001
|2 WOS
037 _ _ |a FZJ-2025-02521
082 _ _ |a 660
100 1 _ |a Han, Yi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a An Energy Efficient Memory Cell for Quantum and Neuromorphic Computing at Low Temperatures
260 _ _ |a Washington, DC
|c 2025
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748424730_26423
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Efficient computing in cryogenic environments, including classical von Neumann, quantum, and neuromorphic systems, is poised to transform big data processing. The quest for high-density, energy-efficient memories continues, with cryogenic memory solutions still unclear. We present a Cryogenic Capacitorless Random Access Memory (C2RAM) cell using advanced Si technology, which enhances storage density through its scalability and multistate capability. Remarkably, the C2RAM maintains data for over a decade with its extended retention times and offers potential as an artificial synapse. This positions C2RAM as an ideal nonvolatile memory candidate for cryogenic computing applications and emerging quantum technologies.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sun, Jingxuan
|0 P:(DE-Juel1)186864
|b 1
|u fzj
700 1 _ |a Richstein, Benjamin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Grenmyr, Andreas
|0 P:(DE-Juel1)188135
|b 3
|u fzj
700 1 _ |a Bae, Jin-Hee
|0 P:(DE-Juel1)177006
|b 4
|u fzj
700 1 _ |a Allibert, Frederic
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Radu, Ionut
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 7
|u fzj
700 1 _ |a Knoch, Joachim
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.4c05855
|g Vol. 25, no. 16, p. 6374 - 6381
|0 PERI:(DE-600)2048866-X
|n 16
|p 6374 - 6381
|t Nano letters
|v 25
|y 2025
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/1042314/files/han-et-al-2025-an-energy-efficient-memory-cell-for-quantum-and-neuromorphic-computing-at-low-temperatures.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042314
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186864
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188135
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177006
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125588
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21