001     1042382
005     20251210202145.0
024 7 _ |a 10.1080/00036811.2025.2504034
|2 doi
024 7 _ |a 1026-7360
|2 ISSN
024 7 _ |a 0003-6811
|2 ISSN
024 7 _ |a 1563-504X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02553
|2 datacite_doi
037 _ _ |a FZJ-2025-02553
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Hughes, Victor
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Two direct sampling methods for an anisotropic scatterer with a conductive boundary
260 _ _ |c 2025
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765353392_5931
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary condition. We will assume that the corresponding far–field pattern or Cauchy data is either known or measured. The conductive boundary condition models a thin coating around the boundary of the scatterer. We will develop two direct sampling methods to solve the inverse shape problem by numerically recovering the scatterer. To this end, we study direct sampling methods by deriving that the corresponding imaging functionals decay as the sampling point moves away from the scatterer. These methods have been applied to other inverse shape problems, but this is the first time they will be applied to an anisotropic scatterer with a conductive boundary condition. These methods allow one to recover the scatterer by considering an inner–product of the far–field data or the Cauchy data. Here, we will assume that the Cauchy data is known on the boundary of a region Ω that completely encloses the scatterer D. We present numerical reconstructions in two dimensions to validate our theoretical results for both circular and non-circular scatterers.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Harris, Isaac
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Kleefeld, Andreas
|0 P:(DE-Juel1)169421
|b 2
773 _ _ |a 10.1080/00036811.2025.2504034
|g p. 1 - 31
|0 PERI:(DE-600)1465373-4
|n 18
|p 3656-3686
|t Applicable analysis
|v 104
|y 2025
|x 1026-7360
856 4 _ |u https://juser.fz-juelich.de/record/1042382/files/Two%20direct%20sampling%20methods%20for%20an%20anisotropic%20scatterer%20with%20a%20conductive%20boundary.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042382
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169421
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ANAL : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21