001042652 001__ 1042652
001042652 005__ 20250610131449.0
001042652 0247_ $$2doi$$a10.1002/adfm.202422706
001042652 0247_ $$2ISSN$$a1616-301X
001042652 0247_ $$2ISSN$$a1057-9257
001042652 0247_ $$2ISSN$$a1099-0712
001042652 0247_ $$2ISSN$$a1616-3028
001042652 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02633
001042652 0247_ $$2WOS$$aWOS:001389848300001
001042652 037__ $$aFZJ-2025-02633
001042652 082__ $$a530
001042652 1001_ $$00000-0002-3586-0815$$aSun, Lulu$$b0
001042652 245__ $$aA Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance
001042652 260__ $$aWeinheim$$bWiley-VCH$$c2025
001042652 3367_ $$2DRIVER$$aarticle
001042652 3367_ $$2DataCite$$aOutput Types/Journal article
001042652 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747890642_20444
001042652 3367_ $$2BibTeX$$aARTICLE
001042652 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042652 3367_ $$00$$2EndNote$$aJournal Article
001042652 520__ $$aFlexible emerging photovoltaic technologies, such as organic and perovskite photovoltaics, hold great potential for integration into tents, wearable electronics, and other portable applications. Recently, Fukuda et al. (2024) propose a bending test protocol for standardizing the mechanical performance characterization of flexible solar cells, focusing on 1% strain over 1 000 bending cycles. This marked an important step toward establishing consistency and good practices in the literature. However, even with this unified protocol, accurately comparing the mechanical flexibility of solar cells is hindered by the variated influence of parameters like thickness, bending radius, and power conversion efficiency (PCE) evolution during mechanical testing. Herein, a new figure of merit is introduced, the flexible photovoltaic fatigue factor (F), which integrates PCE retention, strain, and bending cycles into a cohesive framework. Guided by a detailed multilayer mechanical model, this metric enables more accurate strain analysis and promotes consistent reporting, paving the way for performance optimization in flexible photovoltaics.
001042652 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001042652 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042652 7001_ $$00000-0001-8015-5819$$aFukuda, Kenjiro$$b1$$eCorresponding author
001042652 7001_ $$00000-0001-5191-7482$$aGuo, Ruiqi$$b2
001042652 7001_ $$00000-0003-2525-8852$$aCastriotta, Luigi A.$$b3
001042652 7001_ $$0P:(DE-Juel1)178784$$aForberich, Karen$$b4$$ufzj
001042652 7001_ $$00000-0001-6424-9962$$aZhou, Yinhua$$b5
001042652 7001_ $$00000-0003-3051-1138$$aSomeya, Takao$$b6
001042652 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b7
001042652 7001_ $$00000-0002-2523-0203$$aAlmora, Osbel$$b8$$eCorresponding author
001042652 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202422706$$gVol. 35, no. 19, p. 2422706$$n19$$p2422706$$tAdvanced functional materials$$v35$$x1616-301X$$y2025
001042652 8564_ $$uhttps://juser.fz-juelich.de/record/1042652/files/Adv%20Funct%20Materials%20-%202025%20-%20Sun%20-%20A%20Flexible%20Photovoltaic%20Fatigue%20Factor%20for%20Quantification%20of%20Mechanical%20Device.pdf$$yOpenAccess
001042652 909CO $$ooai:juser.fz-juelich.de:1042652$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001042652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178784$$aForschungszentrum Jülich$$b4$$kFZJ
001042652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b7$$kFZJ
001042652 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001042652 9141_ $$y2025
001042652 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2022$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2022$$d2024-12-16
001042652 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001042652 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-16$$wger
001042652 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042652 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001042652 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001042652 920__ $$lyes
001042652 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001042652 980__ $$ajournal
001042652 980__ $$aVDB
001042652 980__ $$aUNRESTRICTED
001042652 980__ $$aI:(DE-Juel1)IET-2-20140314
001042652 9801_ $$aFullTexts