Journal Article FZJ-2025-02633

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance

 ;  ;  ;  ;  ;  ;  ;  ;

2025
Wiley-VCH Weinheim

Advanced functional materials 35(19), 2422706 () [10.1002/adfm.202422706]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: Flexible emerging photovoltaic technologies, such as organic and perovskite photovoltaics, hold great potential for integration into tents, wearable electronics, and other portable applications. Recently, Fukuda et al. (2024) propose a bending test protocol for standardizing the mechanical performance characterization of flexible solar cells, focusing on 1% strain over 1 000 bending cycles. This marked an important step toward establishing consistency and good practices in the literature. However, even with this unified protocol, accurately comparing the mechanical flexibility of solar cells is hindered by the variated influence of parameters like thickness, bending radius, and power conversion efficiency (PCE) evolution during mechanical testing. Herein, a new figure of merit is introduced, the flexible photovoltaic fatigue factor (F), which integrates PCE retention, strain, and bending cycles into a cohesive framework. Guided by a detailed multilayer mechanical model, this metric enables more accurate strain analysis and promotes consistent reporting, paving the way for performance optimization in flexible photovoltaics.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien (IET-2)
Research Program(s):
  1. 1214 - Modules, stability, performance and specific applications (POF4-121) (POF4-121)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2025-05-21, last modified 2025-06-10


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)