001     1042652
005     20250610131449.0
024 7 _ |a 10.1002/adfm.202422706
|2 doi
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02633
|2 datacite_doi
024 7 _ |a WOS:001389848300001
|2 WOS
037 _ _ |a FZJ-2025-02633
082 _ _ |a 530
100 1 _ |a Sun, Lulu
|0 0000-0002-3586-0815
|b 0
245 _ _ |a A Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747890642_20444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Flexible emerging photovoltaic technologies, such as organic and perovskite photovoltaics, hold great potential for integration into tents, wearable electronics, and other portable applications. Recently, Fukuda et al. (2024) propose a bending test protocol for standardizing the mechanical performance characterization of flexible solar cells, focusing on 1% strain over 1 000 bending cycles. This marked an important step toward establishing consistency and good practices in the literature. However, even with this unified protocol, accurately comparing the mechanical flexibility of solar cells is hindered by the variated influence of parameters like thickness, bending radius, and power conversion efficiency (PCE) evolution during mechanical testing. Herein, a new figure of merit is introduced, the flexible photovoltaic fatigue factor (F), which integrates PCE retention, strain, and bending cycles into a cohesive framework. Guided by a detailed multilayer mechanical model, this metric enables more accurate strain analysis and promotes consistent reporting, paving the way for performance optimization in flexible photovoltaics.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fukuda, Kenjiro
|0 0000-0001-8015-5819
|b 1
|e Corresponding author
700 1 _ |a Guo, Ruiqi
|0 0000-0001-5191-7482
|b 2
700 1 _ |a Castriotta, Luigi A.
|0 0000-0003-2525-8852
|b 3
700 1 _ |a Forberich, Karen
|0 P:(DE-Juel1)178784
|b 4
|u fzj
700 1 _ |a Zhou, Yinhua
|0 0000-0001-6424-9962
|b 5
700 1 _ |a Someya, Takao
|0 0000-0003-3051-1138
|b 6
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 7
700 1 _ |a Almora, Osbel
|0 0000-0002-2523-0203
|b 8
|e Corresponding author
773 _ _ |a 10.1002/adfm.202422706
|g Vol. 35, no. 19, p. 2422706
|0 PERI:(DE-600)2039420-2
|n 19
|p 2422706
|t Advanced functional materials
|v 35
|y 2025
|x 1616-301X
856 4 _ |u https://juser.fz-juelich.de/record/1042652/files/Adv%20Funct%20Materials%20-%202025%20-%20Sun%20-%20A%20Flexible%20Photovoltaic%20Fatigue%20Factor%20for%20Quantification%20of%20Mechanical%20Device.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042652
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2022
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2022
|d 2024-12-16
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21