001     1042666
005     20250804115202.0
024 7 _ |a 10.1016/j.xcrp.2025.102558
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02635
|2 datacite_doi
024 7 _ |a WOS:001497599200014
|2 WOS
037 _ _ |a FZJ-2025-02635
082 _ _ |a 530
100 1 _ |a Fischer, Benedikt
|0 P:(DE-Juel1)167513
|b 0
|e Corresponding author
245 _ _ |a Light soaking of silicon heterojunction solar cells by applying high-intensity line-shaped laser scans
260 _ _ |a Maryland Heights, MO
|c 2025
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748327992_11818
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Intensive light soaking (LS) is an effective post-treatment to boost the efficiency of hydrogenated amorphous Si (a-Si:H)/crystalline Si (c-Si) heterojunction solar cells. To date, devices have been annealed and illuminated with an intensity of up to 100 suns. Here, the potential of using an ultra-high-density light source equivalent to >10,000 suns is investigated by a scanning continuous-line-shaped infrared laser. It is clarified that the LS effect involves a reordering of H in the a-Si:H layers, which serves as the critical time-limiting process, triggered by carrier injection in c-Si and the associated induced heating. As a result, the local LS treatment increases carrier lifetime and efficiency by up to 400% and 1.3 %abs, respectively. While a laboratory-scale laser was used here, LS treatment via laser (scanning) offers substantial potential for scalability by employing an industrial laser with a larger irradiation area and higher power.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sai, Hitoshi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xu, Zhihao
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nuys, Maurice
|0 P:(DE-Juel1)130277
|b 3
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 4
700 1 _ |a Lauterbach, Volker
|0 P:(DE-Juel1)170055
|b 5
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 6
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 7
|u fzj
700 1 _ |a Matsui, Takuya
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.xcrp.2025.102558
|g Vol. 6, no. 5, p. 102558 -
|0 PERI:(DE-600)3015727-4
|n 5
|p 102558 -
|t Cell reports / Physical science
|v 6
|y 2025
|x 2666-3864
856 4 _ |u https://juser.fz-juelich.de/record/1042666/files/Fischer%20et%20al%20-%202025%20-%20Light%20soaking%20of%20silicon%20heterojunction%20solar%20cell.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042666
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130277
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)170055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130233
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)143905
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:54:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:54:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:54:40Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-3-20101013
|k IMD-3
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-3-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21