001042705 001__ 1042705 001042705 005__ 20251009202053.0 001042705 0247_ $$2doi$$a10.1021/acs.nanolett.4c06492 001042705 0247_ $$2ISSN$$a1530-6984 001042705 0247_ $$2ISSN$$a1530-6992 001042705 037__ $$aFZJ-2025-02651 001042705 082__ $$a660 001042705 1001_ $$0P:(DE-HGF)0$$aRothstein, Alexander$$b0$$eCorresponding author 001042705 245__ $$aGate-Defined Single-Electron Transistors in Twisted Bilayer Graphene 001042705 260__ $$aWashington, DC$$bACS Publ.$$c2025 001042705 3367_ $$2DRIVER$$aarticle 001042705 3367_ $$2DataCite$$aOutput Types/Journal article 001042705 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759996762_2202 001042705 3367_ $$2BibTeX$$aARTICLE 001042705 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001042705 3367_ $$00$$2EndNote$$aJournal Article 001042705 500__ $$aBitte Post-print ergänzen 001042705 520__ $$aTwisted bilayer graphene (tBLG) near the magic angle is a unique platform where the combination of topology and strong correlations gives rise to exotic electronic phases. These phases are gate-tunable and related to the presence of flat electronic bands, isolated by single-particle band gaps. This enables gate-controlled charge confinements, essential for the operation of single-electron transistors (SETs), and allows one to explore the interplay of confinement, electron interactions, band renormalization, and the moiré superlattice, potentially revealing key paradigms of strong correlations. Here, we present gate-defined SETs in tBLG with well-tunable Coulomb blockade resonances. These SETs allow us to study magnetic field-induced quantum oscillations in the density of states of the source-drain reservoirs, providing insight into gate-tunable Fermi surfaces of tBLG. Comparison with tight-binding calculations highlights the importance of displacement-field-induced band renormalization crucial for future advanced gate-tunable quantum devices and circuits in tBLG including, e.g., quantum dots and Josephson junction arrays. 001042705 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001042705 536__ $$0G:(EU-Grant)820254$$a2D4QT - 2D Materials for Quantum Technology (820254)$$c820254$$fERC-2018-COG$$x1 001042705 536__ $$0G:(GEPRIS)535377524$$aDFG project G:(GEPRIS)535377524 - Quantenpunkte in verdrehtem und proximity-gekoppeltem zweilagigen Graphen (535377524)$$c535377524$$x2 001042705 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x3 001042705 536__ $$0G:(GEPRIS)437214324$$aDFG project G:(GEPRIS)437214324 - Durchstimmbare Twistronics: Lokales Tuning und lokale Detektion topologischer Randzustände und Supraleitung in Zweilagigen-Graphen (437214324)$$c437214324$$x4 001042705 536__ $$0G:(GEPRIS)471733165$$aDFG project G:(GEPRIS)471733165 - Moiré-verstärkte Infrarot-Photodetektion und THz-Emission in verdrehten Graphen-Übergittern (471733165)$$c471733165$$x5 001042705 536__ $$0G:(GEPRIS)534269806$$aDFG project G:(GEPRIS)534269806 - Terahertz-Quantensensorik mit Zweilagigen-Graphen Quantenpunkten in Resonatoren (534269806)$$c534269806$$x6 001042705 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001042705 7001_ $$0P:(DE-HGF)0$$aFischer, Ammon$$b1 001042705 7001_ $$0P:(DE-Juel1)201288$$aAchtermann, Anthony$$b2$$ufzj 001042705 7001_ $$0P:(DE-HGF)0$$aIcking, Eike$$b3 001042705 7001_ $$0P:(DE-HGF)0$$aHecker, Katrin$$b4 001042705 7001_ $$0P:(DE-HGF)0$$aBanszerus, Luca$$b5 001042705 7001_ $$0P:(DE-HGF)0$$aOtto, Martin$$b6 001042705 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b7$$ufzj 001042705 7001_ $$0P:(DE-Juel1)130795$$aLentz, Florian$$b8$$ufzj 001042705 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b9 001042705 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b10 001042705 7001_ $$0P:(DE-HGF)0$$aBeschoten, Bernd$$b11 001042705 7001_ $$0P:(DE-HGF)0$$aDolleman, Robin J.$$b12 001042705 7001_ $$0P:(DE-HGF)0$$aKennes, Dante M.$$b13 001042705 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b14$$eCorresponding author 001042705 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.4c06492$$gVol. 25, no. 16, p. 6429 - 6437$$n16$$p6429 - 6437$$tNano letters$$v25$$x1530-6984$$y2025 001042705 8564_ $$uhttps://juser.fz-juelich.de/record/1042705/files/revised%2Bcombined%2B-%2Bchanges%2Bnot%2Bhighlighted.pdf$$yRestricted 001042705 909CO $$ooai:juser.fz-juelich.de:1042705$$popenaire$$pec_fundedresources 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH 001042705 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201288$$aForschungszentrum Jülich$$b2$$kFZJ 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH 001042705 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128856$$aForschungszentrum Jülich$$b7$$kFZJ 001042705 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich$$b8$$kFZJ 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b11$$kRWTH 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b12$$kRWTH 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b13$$kRWTH 001042705 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b14$$kFZJ 001042705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b14$$kRWTH 001042705 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001042705 9141_ $$y2025 001042705 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18 001042705 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2024-12-18 001042705 920__ $$lyes 001042705 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 001042705 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 001042705 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x2 001042705 980__ $$ajournal 001042705 980__ $$aEDITORS 001042705 980__ $$aVDBINPRINT 001042705 980__ $$aI:(DE-Juel1)PGI-9-20110106 001042705 980__ $$aI:(DE-82)080009_20140620 001042705 980__ $$aI:(DE-Juel1)HNF-20170116 001042705 980__ $$aUNRESTRICTED