001042899 001__ 1042899 001042899 005__ 20250627204348.0 001042899 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02699 001042899 037__ $$aFZJ-2025-02699 001042899 041__ $$aEnglish 001042899 1001_ $$0P:(DE-Juel1)165321$$aPronold, Jari$$b0 001042899 1112_ $$aIAS Retreat 2025$$cJülich$$d2025-05-27 - 2025-05-27$$wGermany 001042899 245__ $$aMulti-scale Spiking Network Model of Human Cerebral Cortex 001042899 260__ $$c2025 001042899 3367_ $$033$$2EndNote$$aConference Paper 001042899 3367_ $$2BibTeX$$aINPROCEEDINGS 001042899 3367_ $$2DRIVER$$aconferenceObject 001042899 3367_ $$2ORCID$$aCONFERENCE_POSTER 001042899 3367_ $$2DataCite$$aOutput Types/Conference Poster 001042899 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1751007316_5630$$xOther 001042899 520__ $$aData-driven models at cellular resolution exist for various brain regions, yet few for human cortex. We present a comprehensive point-neuron network model of a human cortical hemisphere that integrates diverse experimental data into a unified framework bridging cellular and network scales [1]. Like a previous large-scale spiking model of macaque cortex [2,3], our work investigates how resting-state activity emerges in cortical networks.The model represents one hemisphere via the Desikan-Killiany parcellation (34 areas), with each area implemented as a 1 mm² microcircuit that distinguishes cortical layers. It aggregates multimodal data, including electron microscopy for synapse density, cytoarchitecture from the von Economo atlas [4], DTI-based connectivity [5], and local connection probabilities from the Potjans-Diesmann microcircuit [6]. Human neuron morphologies [7] guide layer-specific inter-area connectivity. The full-density model, comprising 3.47 million leaky integrate-and-fire neurons and 42.8 billion synapses, was simulated using NEST on the JURECA-DC supercomputer.Simulations show that equal strength for local and inter-area synapses yields asynchronous irregular activity that deviates from experimental observations. When inter-area connections are strengthened relative to local synapses, both microscopic spiking statistics from human medial frontal cortex and macroscopic resting-state fMRI correlations are reproduced [8]. In the latter scenario, consistent with empirical findings during visual imagery [9], sustained activity flows primarily from parietal through occipital and temporal to frontal areas.This open-source model enables systematic exploration of structure-dynamics relationships. Future work may leverage the Julich-Brain Atlas to refine the parcellation and incorporate detailed cytoarchitectural and receptor data [10]. The model code is available at https://github.com/INM-6/human-multi-area-model. 001042899 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0 001042899 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1 001042899 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x2 001042899 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x3 001042899 536__ $$0G:(DE-Juel-1)HiRSE_PS-20220812$$aHiRSE_PS - Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)$$cHiRSE_PS-20220812$$x4 001042899 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x5 001042899 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x6 001042899 7001_ $$0P:(DE-Juel1)173607$$avan Meegen, Alexander$$b1 001042899 7001_ $$0P:(DE-Juel1)190767$$aShimoura, Renan$$b2$$eCorresponding author$$ufzj 001042899 7001_ $$0P:(DE-Juel1)180364$$aVollenbröker, Hannah$$b3 001042899 7001_ $$0P:(DE-HGF)0$$aSenden, Mario$$b4 001042899 7001_ $$0P:(DE-HGF)0$$aHilgetag, C. C.$$b5 001042899 7001_ $$0P:(DE-Juel1)145578$$aBakker, Rembrandt$$b6$$ufzj 001042899 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b7$$ufzj 001042899 8564_ $$uhttps://juser.fz-juelich.de/record/1042899/files/poster-HuMAM.pdf$$yOpenAccess 001042899 909CO $$ooai:juser.fz-juelich.de:1042899$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources 001042899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190767$$aForschungszentrum Jülich$$b2$$kFZJ 001042899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145578$$aForschungszentrum Jülich$$b6$$kFZJ 001042899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b7$$kFZJ 001042899 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0 001042899 9141_ $$y2025 001042899 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001042899 920__ $$lno 001042899 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0 001042899 980__ $$aposter 001042899 980__ $$aVDB 001042899 980__ $$aUNRESTRICTED 001042899 980__ $$aI:(DE-Juel1)IAS-6-20130828 001042899 9801_ $$aFullTexts