Hauptseite > Publikationsdatenbank > Multi-scale Spiking Network Model of Human Cerebral Cortex > print |
001 | 1042899 | ||
005 | 20250627204348.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2025-02699 |2 datacite_doi |
037 | _ | _ | |a FZJ-2025-02699 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Pronold, Jari |0 P:(DE-Juel1)165321 |b 0 |
111 | 2 | _ | |a IAS Retreat 2025 |c Jülich |d 2025-05-27 - 2025-05-27 |w Germany |
245 | _ | _ | |a Multi-scale Spiking Network Model of Human Cerebral Cortex |
260 | _ | _ | |c 2025 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1751007316_5630 |2 PUB:(DE-HGF) |x Other |
520 | _ | _ | |a Data-driven models at cellular resolution exist for various brain regions, yet few for human cortex. We present a comprehensive point-neuron network model of a human cortical hemisphere that integrates diverse experimental data into a unified framework bridging cellular and network scales [1]. Like a previous large-scale spiking model of macaque cortex [2,3], our work investigates how resting-state activity emerges in cortical networks.The model represents one hemisphere via the Desikan-Killiany parcellation (34 areas), with each area implemented as a 1 mm² microcircuit that distinguishes cortical layers. It aggregates multimodal data, including electron microscopy for synapse density, cytoarchitecture from the von Economo atlas [4], DTI-based connectivity [5], and local connection probabilities from the Potjans-Diesmann microcircuit [6]. Human neuron morphologies [7] guide layer-specific inter-area connectivity. The full-density model, comprising 3.47 million leaky integrate-and-fire neurons and 42.8 billion synapses, was simulated using NEST on the JURECA-DC supercomputer.Simulations show that equal strength for local and inter-area synapses yields asynchronous irregular activity that deviates from experimental observations. When inter-area connections are strengthened relative to local synapses, both microscopic spiking statistics from human medial frontal cortex and macroscopic resting-state fMRI correlations are reproduced [8]. In the latter scenario, consistent with empirical findings during visual imagery [9], sustained activity flows primarily from parietal through occipital and temporal to frontal areas.This open-source model enables systematic exploration of structure-dynamics relationships. Future work may leverage the Julich-Brain Atlas to refine the parcellation and incorporate detailed cytoarchitectural and receptor data [10]. The model code is available at https://github.com/INM-6/human-multi-area-model. |
536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 1 |
536 | _ | _ | |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319) |0 G:(EU-Grant)101147319 |c 101147319 |f HORIZON-INFRA-2022-SERV-B-01 |x 2 |
536 | _ | _ | |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |0 G:(DE-Juel1)JL SMHB-2021-2027 |c JL SMHB-2021-2027 |x 3 |
536 | _ | _ | |a HiRSE_PS - Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812) |0 G:(DE-Juel-1)HiRSE_PS-20220812 |c HiRSE_PS-20220812 |x 4 |
536 | _ | _ | |a Brain-Scale Simulations (jinb33_20220812) |0 G:(DE-Juel1)jinb33_20220812 |c jinb33_20220812 |f Brain-Scale Simulations |x 5 |
536 | _ | _ | |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 6 |
700 | 1 | _ | |a van Meegen, Alexander |0 P:(DE-Juel1)173607 |b 1 |
700 | 1 | _ | |a Shimoura, Renan |0 P:(DE-Juel1)190767 |b 2 |e Corresponding author |u fzj |
700 | 1 | _ | |a Vollenbröker, Hannah |0 P:(DE-Juel1)180364 |b 3 |
700 | 1 | _ | |a Senden, Mario |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Hilgetag, C. C. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Bakker, Rembrandt |0 P:(DE-Juel1)145578 |b 6 |u fzj |
700 | 1 | _ | |a van Albada, Sacha |0 P:(DE-Juel1)138512 |b 7 |u fzj |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1042899/files/poster-HuMAM.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1042899 |p openaire |p open_access |p VDB |p driver |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)190767 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)145578 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)138512 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Computational and Systems Neuroscience |x 0 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|