001     1042899
005     20250627204348.0
024 7 _ |a 10.34734/FZJ-2025-02699
|2 datacite_doi
037 _ _ |a FZJ-2025-02699
041 _ _ |a English
100 1 _ |a Pronold, Jari
|0 P:(DE-Juel1)165321
|b 0
111 2 _ |a IAS Retreat 2025
|c Jülich
|d 2025-05-27 - 2025-05-27
|w Germany
245 _ _ |a Multi-scale Spiking Network Model of Human Cerebral Cortex
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1751007316_5630
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Data-driven models at cellular resolution exist for various brain regions, yet few for human cortex. We present a comprehensive point-neuron network model of a human cortical hemisphere that integrates diverse experimental data into a unified framework bridging cellular and network scales [1]. Like a previous large-scale spiking model of macaque cortex [2,3], our work investigates how resting-state activity emerges in cortical networks.The model represents one hemisphere via the Desikan-Killiany parcellation (34 areas), with each area implemented as a 1 mm² microcircuit that distinguishes cortical layers. It aggregates multimodal data, including electron microscopy for synapse density, cytoarchitecture from the von Economo atlas [4], DTI-based connectivity [5], and local connection probabilities from the Potjans-Diesmann microcircuit [6]. Human neuron morphologies [7] guide layer-specific inter-area connectivity. The full-density model, comprising 3.47 million leaky integrate-and-fire neurons and 42.8 billion synapses, was simulated using NEST on the JURECA-DC supercomputer.Simulations show that equal strength for local and inter-area synapses yields asynchronous irregular activity that deviates from experimental observations. When inter-area connections are strengthened relative to local synapses, both microscopic spiking statistics from human medial frontal cortex and macroscopic resting-state fMRI correlations are reproduced [8]. In the latter scenario, consistent with empirical findings during visual imagery [9], sustained activity flows primarily from parietal through occipital and temporal to frontal areas.This open-source model enables systematic exploration of structure-dynamics relationships. Future work may leverage the Julich-Brain Atlas to refine the parcellation and incorporate detailed cytoarchitectural and receptor data [10]. The model code is available at https://github.com/INM-6/human-multi-area-model.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 2
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 3
536 _ _ |a HiRSE_PS - Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)
|0 G:(DE-Juel-1)HiRSE_PS-20220812
|c HiRSE_PS-20220812
|x 4
536 _ _ |a Brain-Scale Simulations (jinb33_20220812)
|0 G:(DE-Juel1)jinb33_20220812
|c jinb33_20220812
|f Brain-Scale Simulations
|x 5
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 6
700 1 _ |a van Meegen, Alexander
|0 P:(DE-Juel1)173607
|b 1
700 1 _ |a Shimoura, Renan
|0 P:(DE-Juel1)190767
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Vollenbröker, Hannah
|0 P:(DE-Juel1)180364
|b 3
700 1 _ |a Senden, Mario
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hilgetag, C. C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bakker, Rembrandt
|0 P:(DE-Juel1)145578
|b 6
|u fzj
700 1 _ |a van Albada, Sacha
|0 P:(DE-Juel1)138512
|b 7
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1042899/files/poster-HuMAM.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042899
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190767
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145578
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21