TY - JOUR
AU - Sasse, L.
AU - Nicolaisen, Eliana
AU - Dukart, Jürgen
AU - Eickhoff, S. B.
AU - Götz, M.
AU - Hamdan, S.
AU - Komeyer, V.
AU - Kulkarni, A.
AU - Lahnakoski, J. M.
AU - Love, B. C.
AU - Raimondo, F.
AU - Patil, Kaustubh R.
TI - Overview of leakage scenarios in supervised machine learning
JO - Journal of Big Data
VL - 12
IS - 1
SN - 2196-1115
CY - Heidelberg [u.a.]
PB - SpringerOpen
M1 - FZJ-2025-02765
SP - 135
PY - 2025
AB - Machine learning (ML) provides powerful tools for predictive modeling. ML’s popularity stems from the promise of sample-level prediction with applications across a variety of fields from physics and marketing to healthcare. However, if not properly implemented and evaluated, ML pipelines may contain leakage typically resulting in overoptimistic performance estimates and failure to generalize to new data. This can have severe negative financial and societal implications. Our aim is to expand understanding associated with causes leading to leakage when designing, implementing, and evaluating ML pipelines. Illustrated by concrete examples, we provide a comprehensive overview and discussion of various types of leakage that may arise in ML pipelines.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:001498691400001
DO - DOI:10.1186/s40537-025-01193-8
UR - https://juser.fz-juelich.de/record/1043079
ER -