TY - JOUR AU - Sasse, L. AU - Nicolaisen, Eliana AU - Dukart, Jürgen AU - Eickhoff, S. B. AU - Götz, M. AU - Hamdan, S. AU - Komeyer, V. AU - Kulkarni, A. AU - Lahnakoski, J. M. AU - Love, B. C. AU - Raimondo, F. AU - Patil, Kaustubh R. TI - Overview of leakage scenarios in supervised machine learning JO - Journal of Big Data VL - 12 IS - 1 SN - 2196-1115 CY - Heidelberg [u.a.] PB - SpringerOpen M1 - FZJ-2025-02765 SP - 135 PY - 2025 AB - Machine learning (ML) provides powerful tools for predictive modeling. ML’s popularity stems from the promise of sample-level prediction with applications across a variety of fields from physics and marketing to healthcare. However, if not properly implemented and evaluated, ML pipelines may contain leakage typically resulting in overoptimistic performance estimates and failure to generalize to new data. This can have severe negative financial and societal implications. Our aim is to expand understanding associated with causes leading to leakage when designing, implementing, and evaluating ML pipelines. Illustrated by concrete examples, we provide a comprehensive overview and discussion of various types of leakage that may arise in ML pipelines. LB - PUB:(DE-HGF)16 UR - <Go to ISI:>//WOS:001498691400001 DO - DOI:10.1186/s40537-025-01193-8 UR - https://juser.fz-juelich.de/record/1043079 ER -