001043550 001__ 1043550
001043550 005__ 20251010082843.0
001043550 0247_ $$2doi$$a10.1038/s41467-024-55376-7
001043550 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02924
001043550 0247_ $$2pmid$$a39747017
001043550 0247_ $$2WOS$$aWOS:001390013500026
001043550 037__ $$aFZJ-2025-02924
001043550 082__ $$a500
001043550 1001_ $$00000-0003-2405-4268$$aTian, Jingjing$$b0
001043550 245__ $$aOvercoming optical losses in thin metal-based recombination layers for efficient n-i-p perovskite-organic tandem solar cells
001043550 260__ $$a[London]$$bSpringer Nature$$c2025
001043550 3367_ $$2DRIVER$$aarticle
001043550 3367_ $$2DataCite$$aOutput Types/Journal article
001043550 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752752917_3508
001043550 3367_ $$2BibTeX$$aARTICLE
001043550 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043550 3367_ $$00$$2EndNote$$aJournal Article
001043550 520__ $$aPerovskite-organic tandem solar cells (P-O-TSCs) hold substantial potential to surpass the theoretical efficiency limits of single-junction solar cells. However, their performance is hampered by non-ideal interconnection layers (ICLs). Especially in n-i-p configurations, the incorporation of metal nanoparticles negatively introduces serious parasitic absorption, which alleviates photon utilization in organic rear cell and decisively constrains the maximum photocurrent matching with front cell. Here, we demonstrate an efficient strategy to mitigate optical losses in Au-embedded ICLs by tailoring the shape and size distribution of Au nanoparticles via manipulating the underlying surface property. Achieving fewer, smaller, and more uniformly spherical Au nanoparticles significantly minimizes localized surface plasmon resonance absorption, while maintaining efficient electron-hole recombination within ICLs. Consequently, optimized P-O-TSCs combining CsPbI2Br with various organic cells benefit from a substantial current gain of >1.5 mA/cm2 in organic rear cells, achieving a champion efficiency of 25.34%. Meanwhile, optimized ICLs contribute to improved long-term device stability.
001043550 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001043550 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043550 7001_ $$0P:(DE-Juel1)201377$$aLiu, Chao$$b1$$eCorresponding author
001043550 7001_ $$0P:(DE-Juel1)178784$$aForberich, Karen$$b2
001043550 7001_ $$0P:(DE-HGF)0$$aBarabash, Anastasia$$b3
001043550 7001_ $$0P:(DE-HGF)0$$aXie, Zhiqiang$$b4
001043550 7001_ $$0P:(DE-HGF)0$$aQiu, Shudi$$b5
001043550 7001_ $$00009-0001-3605-8867$$aByun, Jiwon$$b6
001043550 7001_ $$aPeng, Zijian$$b7
001043550 7001_ $$00000-0003-3468-3543$$aZhang, Kaicheng$$b8
001043550 7001_ $$0P:(DE-Juel1)200304$$aDU, Tian$$b9
001043550 7001_ $$aSathasivam, Sanjayan$$b10
001043550 7001_ $$aMacdonald, Thomas J.$$b11
001043550 7001_ $$aDong, Lirong$$b12
001043550 7001_ $$00000-0002-8399-4244$$aLi, Chaohui$$b13
001043550 7001_ $$0P:(DE-Juel1)194716$$aZhang, Jiyun$$b14
001043550 7001_ $$00000-0001-5976-0862$$aHalik, Marcus$$b15
001043550 7001_ $$0P:(DE-Juel1)201923$$aLe Corre, Vincent Marc$$b16
001043550 7001_ $$aOsvet, Andres$$b17
001043550 7001_ $$0P:(DE-Juel1)180635$$aHeumüller, Thomas$$b18
001043550 7001_ $$0P:(DE-Juel1)180778$$aLi, Ning$$b19
001043550 7001_ $$00000-0001-6424-9962$$aZhou, Yinhua$$b20
001043550 7001_ $$0P:(DE-Juel1)206674$$aLüer, Larry$$b21$$eCorresponding author
001043550 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b22$$eCorresponding author
001043550 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-55376-7$$gVol. 16, no. 1, p. 154$$n1$$p154$$tNature Communications$$v16$$x2041-1723$$y2025
001043550 8564_ $$uhttps://juser.fz-juelich.de/record/1043550/files/s41467-024-55376-7.pdf$$yOpenAccess
001043550 8767_ $$8SN-2025-00432-b$$92025-05-26$$a1200214585$$d2025-06-30$$eAPC$$jZahlung erfolgt
001043550 8767_ $$8SN-2025-00432-b$$92025-06-26$$a1200214585$$d2025-06-30$$eAPC$$jZahlung angewiesen
001043550 909CO $$ooai:juser.fz-juelich.de:1043550$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001043550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201377$$aForschungszentrum Jülich$$b1$$kFZJ
001043550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178784$$aForschungszentrum Jülich$$b2$$kFZJ
001043550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200304$$aForschungszentrum Jülich$$b9$$kFZJ
001043550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194716$$aForschungszentrum Jülich$$b14$$kFZJ
001043550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180635$$aForschungszentrum Jülich$$b18$$kFZJ
001043550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206674$$aForschungszentrum Jülich$$b21$$kFZJ
001043550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b22$$kFZJ
001043550 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001043550 9141_ $$y2025
001043550 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043550 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
001043550 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
001043550 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001043550 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043550 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
001043550 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001043550 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001043550 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001043550 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001043550 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001043550 920__ $$lyes
001043550 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001043550 980__ $$ajournal
001043550 980__ $$aVDB
001043550 980__ $$aUNRESTRICTED
001043550 980__ $$aI:(DE-Juel1)IET-2-20140314
001043550 980__ $$aAPC
001043550 9801_ $$aAPC
001043550 9801_ $$aFullTexts