Journal Article FZJ-2025-02924

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Overcoming optical losses in thin metal-based recombination layers for efficient n-i-p perovskite-organic tandem solar cells

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Springer Nature [London]

Nature Communications 16(1), 154 () [10.1038/s41467-024-55376-7]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Perovskite-organic tandem solar cells (P-O-TSCs) hold substantial potential to surpass the theoretical efficiency limits of single-junction solar cells. However, their performance is hampered by non-ideal interconnection layers (ICLs). Especially in n-i-p configurations, the incorporation of metal nanoparticles negatively introduces serious parasitic absorption, which alleviates photon utilization in organic rear cell and decisively constrains the maximum photocurrent matching with front cell. Here, we demonstrate an efficient strategy to mitigate optical losses in Au-embedded ICLs by tailoring the shape and size distribution of Au nanoparticles via manipulating the underlying surface property. Achieving fewer, smaller, and more uniformly spherical Au nanoparticles significantly minimizes localized surface plasmon resonance absorption, while maintaining efficient electron-hole recombination within ICLs. Consequently, optimized P-O-TSCs combining CsPbI2Br with various organic cells benefit from a substantial current gain of >1.5 mA/cm2 in organic rear cells, achieving a champion efficiency of 25.34%. Meanwhile, optimized ICLs contribute to improved long-term device stability.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien (IET-2)
Research Program(s):
  1. 1213 - Cell Design and Development (POF4-121) (POF4-121)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-2
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2025-06-30, last modified 2025-08-04


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)