| Home > Publications database > Overcoming optical losses in thin metal-based recombination layers for efficient n-i-p perovskite-organic tandem solar cells > print |
| 001 | 1043550 | ||
| 005 | 20251010082843.0 | ||
| 024 | 7 | _ | |a 10.1038/s41467-024-55376-7 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-02924 |2 datacite_doi |
| 024 | 7 | _ | |a 39747017 |2 pmid |
| 024 | 7 | _ | |a WOS:001390013500026 |2 WOS |
| 037 | _ | _ | |a FZJ-2025-02924 |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Tian, Jingjing |0 0000-0003-2405-4268 |b 0 |
| 245 | _ | _ | |a Overcoming optical losses in thin metal-based recombination layers for efficient n-i-p perovskite-organic tandem solar cells |
| 260 | _ | _ | |a [London] |c 2025 |b Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752752917_3508 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Perovskite-organic tandem solar cells (P-O-TSCs) hold substantial potential to surpass the theoretical efficiency limits of single-junction solar cells. However, their performance is hampered by non-ideal interconnection layers (ICLs). Especially in n-i-p configurations, the incorporation of metal nanoparticles negatively introduces serious parasitic absorption, which alleviates photon utilization in organic rear cell and decisively constrains the maximum photocurrent matching with front cell. Here, we demonstrate an efficient strategy to mitigate optical losses in Au-embedded ICLs by tailoring the shape and size distribution of Au nanoparticles via manipulating the underlying surface property. Achieving fewer, smaller, and more uniformly spherical Au nanoparticles significantly minimizes localized surface plasmon resonance absorption, while maintaining efficient electron-hole recombination within ICLs. Consequently, optimized P-O-TSCs combining CsPbI2Br with various organic cells benefit from a substantial current gain of >1.5 mA/cm2 in organic rear cells, achieving a champion efficiency of 25.34%. Meanwhile, optimized ICLs contribute to improved long-term device stability. |
| 536 | _ | _ | |a 1213 - Cell Design and Development (POF4-121) |0 G:(DE-HGF)POF4-1213 |c POF4-121 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Liu, Chao |0 P:(DE-Juel1)201377 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Forberich, Karen |0 P:(DE-Juel1)178784 |b 2 |
| 700 | 1 | _ | |a Barabash, Anastasia |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Xie, Zhiqiang |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Qiu, Shudi |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Byun, Jiwon |0 0009-0001-3605-8867 |b 6 |
| 700 | 1 | _ | |a Peng, Zijian |b 7 |
| 700 | 1 | _ | |a Zhang, Kaicheng |0 0000-0003-3468-3543 |b 8 |
| 700 | 1 | _ | |a DU, Tian |0 P:(DE-Juel1)200304 |b 9 |
| 700 | 1 | _ | |a Sathasivam, Sanjayan |b 10 |
| 700 | 1 | _ | |a Macdonald, Thomas J. |b 11 |
| 700 | 1 | _ | |a Dong, Lirong |b 12 |
| 700 | 1 | _ | |a Li, Chaohui |0 0000-0002-8399-4244 |b 13 |
| 700 | 1 | _ | |a Zhang, Jiyun |0 P:(DE-Juel1)194716 |b 14 |
| 700 | 1 | _ | |a Halik, Marcus |0 0000-0001-5976-0862 |b 15 |
| 700 | 1 | _ | |a Le Corre, Vincent Marc |0 P:(DE-Juel1)201923 |b 16 |
| 700 | 1 | _ | |a Osvet, Andres |b 17 |
| 700 | 1 | _ | |a Heumüller, Thomas |0 P:(DE-Juel1)180635 |b 18 |
| 700 | 1 | _ | |a Li, Ning |0 P:(DE-Juel1)180778 |b 19 |
| 700 | 1 | _ | |a Zhou, Yinhua |0 0000-0001-6424-9962 |b 20 |
| 700 | 1 | _ | |a Lüer, Larry |0 P:(DE-Juel1)206674 |b 21 |e Corresponding author |
| 700 | 1 | _ | |a Brabec, Christoph J. |0 P:(DE-Juel1)176427 |b 22 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s41467-024-55376-7 |g Vol. 16, no. 1, p. 154 |0 PERI:(DE-600)2553671-0 |n 1 |p 154 |t Nature Communications |v 16 |y 2025 |x 2041-1723 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1043550/files/s41467-024-55376-7.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1043550 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)201377 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)178784 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)200304 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)194716 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 18 |6 P:(DE-Juel1)180635 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 21 |6 P:(DE-Juel1)206674 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 22 |6 P:(DE-Juel1)176427 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1213 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-02 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IET-2-20140314 |k IET-2 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|