001     1044676
005     20250731153844.0
024 7 _ |a 10.1002/smtd.202500542
|2 doi
037 _ _ |a FZJ-2025-03325
082 _ _ |a 620
100 1 _ |a Xie, Zhiqiang
|0 0009-0006-9562-9291
|b 0
|e Corresponding author
245 _ _ |a Emulating Synaptic Events and Nociceptor via Organic–Inorganic Perovskite Threshold Switching Memristor
260 _ _ |a Weinheim
|c 2025
|b WILEY-VCH Verlag GmbH & Co. KGaA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753968994_4192
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As artificial intelligence technology continuously advances, a growing number of bio-mimetic advanced electronic systems are rapidly emerging and being applied in various fields, including humanoid robots and tactile sensors. To effectively address progressively complex tasks and challenging work environments, integrating synaptic and nociceptive functions within a single device is crucial for enhancing the ability to perceive changes and respond accordingly to the external environment. Here, an organic–inorganic perovskite memristor that exhibits excellent volatile performance (ON/OFF ratio ≈102, endurance > 104 cycles) is presented. The device effectively replicates typical synaptic functions, encompassing short- and long-term plasticity. Moreover, due to the switching delay characteristics, essential biological nociceptive features such as threshold, no adaptation, and sensitization are also demonstrated. Further, the perovskite artificial nociceptor is successfully integrated into a thermal nociceptive system. Overall, the fusion of synaptic and nociceptive behaviors paves the way for developing more efficient and versatile systems that can mimic intricate biological processes associated with sensory perception and pain sensation.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wu, Jianchang
|0 P:(DE-Juel1)192542
|b 1
|u fzj
700 1 _ |a Luo, Junsheng
|b 2
700 1 _ |a Feng, Mingjie
|b 3
700 1 _ |a Tian, Jingjing
|b 4
700 1 _ |a Li, Chaohui
|b 5
700 1 _ |a Zhang, Difei
|b 6
700 1 _ |a Chen, Lijun
|b 7
700 1 _ |a Loi, Maria Antonietta
|b 8
700 1 _ |a Tian, Bobo
|b 9
700 1 _ |a Hao, Shenglan
|b 10
700 1 _ |a Cheng, Long
|b 11
700 1 _ |a Osvet, Andres
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 13
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/smtd.202500542
|g p. 2500542
|0 PERI:(DE-600)2884448-8
|p 2500542
|t Small Methods
|v
|y 2025
|x 2366-9608
856 4 _ |u https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL METHODS : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL METHODS : 2022
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21