001     1044683
005     20250731163424.0
024 7 _ |a 10.1002/aidi.202500022
|2 doi
037 _ _ |a FZJ-2025-03331
100 1 _ |a Zhang, Jiyun
|0 P:(DE-Juel1)194716
|b 0
|e Corresponding author
245 _ _ |a Feature Selection for Machine Learning‐Driven Accelerated Discovery and Optimization in Emerging Photovoltaics: A Review
260 _ _ |c 2025
336 7 _ |a Output Types/Book Review
|2 DataCite
336 7 _ |a Review
|b review
|m review
|0 PUB:(DE-HGF)36
|s 1753972334_6123
|2 PUB:(DE-HGF)
336 7 _ |a BOOK_REVIEW
|2 ORCID
336 7 _ |a review
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Missing Journal: Advanced Intelligent Discovery (adv. intell. discov.) = 2943-9981 (import from CrossRef, Journals: juser.fz-juelich.de)
520 _ _ |a Developing reliable emerging photovoltaic (e-PV) technologies requires high-throughput material discovery, device design, and processing optimization. However, the effective process of the resulting high-dimensional, multivariate datasets remains a significant challenge. Integrating feature selection methods and machine learning (ML) provides a robust solution to reduce data dimensionality, improve predictive accuracy, and uncover material performance mechanisms. This review summarizes the advancements in synergizing feature selection methods, particularly the maximum relevance minimum redundancy (mRMR) method embedded, with Gaussian process regression (GPR) to advance e-PVs research. It highlights the importance of integrating feature selection with ML and high-throughput experimentation (HTE) frameworks to accelerate material screening, optimize manufacturing processes, and predict stability. Additionally, the review discusses key challenges such as data quality and model scalability and offers promising strategies to address these limitations. This data-driven approach offers a systematic pathway toward the accelerated discovery and optimization of e-PV technologies.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Tan, Jiayi
|0 P:(DE-Juel1)204179
|b 1
700 1 _ |a Song, Qizhen
|b 2
700 1 _ |a DU, Tian
|0 P:(DE-Juel1)200304
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 4
|u fzj
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/aidi.202500022
|g p. 202500022
|0 PERI:(DE-600)0000000-0
|p 202500022
|t Missing Journal / Fehlende Zeitschrift
|y 2025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194716
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)200304
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 1
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a review
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21