001     1045452
005     20251015202130.0
024 7 _ |a 10.48550/ARXIV.2508.12975
|2 doi
037 _ _ |a FZJ-2025-03504
100 1 _ |a Oberste-Frielinghaus, Jonas
|0 P:(DE-Juel1)186076
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Synchronization and semantization in deep spiking networks
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1760520087_24587
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Recent studies have shown how spiking networks can learn complex functionality through error-correcting plasticity, but the resulting structures and dynamics remain poorly studied. To elucidate how these models may link to observed dynamics in vivo and thus how they may ultimately explain cortical computation, we need a better understanding of their emerging patterns. We train a multi-layer spiking network, as a conceptual analog of the bottom-up visual hierarchy, for visual input classification using spike-time encoding. After learning, we observe the development of distinct spatio-temporal activity patterns. While input patterns are synchronous by construction, activity in early layers first spreads out over time, followed by re-convergence into sharp pulses as classes are gradually extracted. The emergence of synchronicity is accompanied by the formation of increasingly distinct pathways, reflecting the gradual semantization of input activity. We thus observe hierarchical networks learning spike latency codes to naturally acquire activity patterns characterized by synchronicity and separability, with pronounced excitatory pathways ascending through the layers. This provides a rigorous computational hypothesis for the experimentally observed synchronicity in the visual system as a natural consequence of deep learning in cortex.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 2
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 3
536 _ _ |a Algorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)
|0 G:(DE-Juel-1)iBehave-20220812
|c iBehave-20220812
|x 4
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 5
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Neurons and Cognition (q-bio.NC)
|2 Other
650 _ 7 |a Neural and Evolutionary Computing (cs.NE)
|2 Other
650 _ 7 |a Computation (stat.CO)
|2 Other
650 _ 7 |a FOS: Biological sciences
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Kurth, Anno C.
|0 P:(DE-Juel1)176776
|b 1
|u fzj
700 1 _ |a Göltz, Julian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kriener, Laura
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ito, Junji
|0 P:(DE-Juel1)144576
|b 4
|u fzj
700 1 _ |a Petrovici, Mihai A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 6
|u fzj
773 _ _ |a 10.48550/ARXIV.2508.12975
856 4 _ |u https://doi.org/10.48550/arXiv.2508.12975
909 C O |o oai:juser.fz-juelich.de:1045452
|p openaire
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
980 _ _ |a preprint
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21