001045841 001__ 1045841
001045841 005__ 20251013170223.0
001045841 037__ $$aFZJ-2025-03628
001045841 041__ $$aEnglish
001045841 1001_ $$0P:(DE-Juel1)185897$$aDaniel, Davis Thomas$$b0$$eCorresponding author$$ufzj
001045841 245__ $$aILTpy
001045841 250__ $$a1.0.0
001045841 260__ $$c2025
001045841 3367_ $$2DCMI$$aSoftware
001045841 3367_ $$0PUB:(DE-HGF)33$$2PUB:(DE-HGF)$$aSoftware$$bsware$$msware$$s1760367644_10821
001045841 3367_ $$2BibTeX$$aMISC
001045841 3367_ $$06$$2EndNote$$aComputer Program
001045841 3367_ $$2ORCID$$aOTHER
001045841 3367_ $$2DataCite$$aSoftware
001045841 500__ $$aLicensed under LGPL
001045841 520__ $$aILTpy (/ɪltˈpaɪ/) is a python library for performing regularized inversion of one-dimensional or multi-dimensional data without non-negativity constraint. Contributions to respective distributions with both positive and negative sign are determined. Primary applications include magnetic resonance (NMR, EPR), and electrochemical impedance spectroscopy (distribution of relaxation times; DRT). ILTpy implements an inversion algorithm to fit experimental or simulated noisy data of complex materials by computing distributions of underlying physical or chemical properties. It was initially developed for magnetic resonance relaxation and diffusion data, and then also utilized for electrochemical impedance (EIS) data. These data often contain multiple components with varying distributions. Fitting a specific model, such as a mono-exponential, requires prior knowledge of the number of species present and yields only an effective characteristic constant. In contrast, inversion algorithms do not assume the shape or number of species in the system, but instead reveal the distribution of characteristic constants using a kernel suitable for modeling the response of a particular process. A common approach to analyzing magnetic resonance data using Inverse Laplace Transform (ILT) methods involves applying a non-negativity constraint to prevent oscillatory solutions. This constraint assumes that all relaxation components have the same sign. However, in systems where cross-relaxation or exchange occurs, such a constraint is unjustified, as it suppresses any relaxation components with negative values, potentially introducing artificial features in the resulting distributions that do not correspond to actual physical processes. In contrast, ILTpy avoids the use of a non-negativity constraint, employing instead a zero-crossing penalty along with uniform penalty regularization to stabilize the inversion process.
001045841 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001045841 536__ $$0G:(GEPRIS)422726248$$aDFG project G:(GEPRIS)422726248 - SPP 2248: Polymer-basierte Batterien (422726248)$$c422726248$$x1
001045841 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001045841 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
001045841 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x2
001045841 7001_ $$0P:(DE-Juel1)187114$$aBartsch, Christian Hippolyt$$b1
001045841 7001_ $$0P:(DE-Juel1)186816$$aBereck, Franz Philipp$$b2
001045841 7001_ $$0P:(DE-Juel1)192562$$aKöcher, Simone Swantje$$b3
001045841 7001_ $$0P:(DE-Juel1)184961$$aScheurer, Christoph$$b4
001045841 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b5$$ufzj
001045841 8564_ $$uhttps://apps.fz-juelich.de/iltpy
001045841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185897$$aForschungszentrum Jülich$$b0$$kFZJ
001045841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186816$$aForschungszentrum Jülich$$b2$$kFZJ
001045841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192562$$aForschungszentrum Jülich$$b3$$kFZJ
001045841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184961$$aForschungszentrum Jülich$$b4$$kFZJ
001045841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b5$$kFZJ
001045841 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b5$$kRWTH
001045841 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001045841 9141_ $$y2025
001045841 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001045841 980__ $$asware
001045841 980__ $$aEDITORS
001045841 980__ $$aVDBINPRINT
001045841 980__ $$aI:(DE-Juel1)IET-1-20110218
001045841 980__ $$aUNRESTRICTED