001046238 001__ 1046238
001046238 005__ 20250930132710.0
001046238 0247_ $$2doi$$a10.1002/ctm2.70408
001046238 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03758
001046238 0247_ $$2pmid$$a40660744
001046238 0247_ $$2WOS$$aWOS:001528967100001
001046238 037__ $$aFZJ-2025-03758
001046238 082__ $$a610
001046238 1001_ $$0P:(DE-HGF)0$$aHesse, Robert$$b0
001046238 245__ $$aThe coming of age of DNA‐based catalysts for therapeutic applications
001046238 260__ $$aHoboken, NJ$$bWiley$$c2025
001046238 3367_ $$2DRIVER$$aarticle
001046238 3367_ $$2DataCite$$aOutput Types/Journal article
001046238 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758186948_24223
001046238 3367_ $$2BibTeX$$aARTICLE
001046238 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046238 3367_ $$00$$2EndNote$$aJournal Article
001046238 520__ $$aDNA enzymes, also known as DNAzymes (Dz), are synthetic high-precision biocatalysts that have been identified by in vitro selection three decades ago.1 Dz are usually short, single-stranded DNA molecules that catalyse chemical reactions through their specific three-dimensional structure.2 Due to their enormous therapeutic potential, particular interest has been invested in RNA-cleaving Dz, such as the 8–17 Dz and 10–23 Dz2. In general, these DNAzymes share a modular architecture comprising a (conserved) catalytic loop sequence and adaptable substrate binding arm sequences that, following specific design guidelines, can be modified to bind virtually any given target RNA with high selectivity.
001046238 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001046238 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001046238 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046238 7001_ $$0P:(DE-Juel1)174133$$aGertzen, Christoph G. W.$$b1
001046238 7001_ $$0P:(DE-Juel1)194373$$aSchmuck, Jessica Felice$$b2
001046238 7001_ $$0P:(DE-HGF)0$$aBöcker, Justin Darvin$$b3
001046238 7001_ $$0P:(DE-HGF)0$$aPandey, Piyush$$b4
001046238 7001_ $$0P:(DE-HGF)0$$aBehn, Tobias$$b5
001046238 7001_ $$0P:(DE-HGF)0$$aRuth, Christopher$$b6
001046238 7001_ $$0P:(DE-HGF)0$$aRiesner, Detlev$$b7
001046238 7001_ $$00000-0002-5180-360X$$aKath-Schorr, Stephanie$$b8$$eCorresponding author
001046238 7001_ $$0P:(DE-HGF)0$$aLang, Philipp A.$$b9$$eCorresponding author
001046238 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b10$$eCorresponding author
001046238 7001_ $$0P:(DE-Juel1)156341$$aEtzkorn, Manuel$$b11$$eCorresponding author
001046238 773__ $$0PERI:(DE-600)2697013-2$$a10.1002/ctm2.70408$$gVol. 15, no. 7, p. e70408$$n7$$pe70408$$tClinical and translational medicine$$v15$$x2001-1326$$y2025
001046238 8564_ $$uhttps://juser.fz-juelich.de/record/1046238/files/Clinical%20Translational%20Med%20-%202025%20-%20Hesse%20-%20The%20coming%20of%20age%20of%20DNA%E2%80%90based%20catalysts%20for%20therapeutic%20applications.pdf$$yOpenAccess
001046238 909CO $$ooai:juser.fz-juelich.de:1046238$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001046238 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194373$$aForschungszentrum Jülich$$b2$$kFZJ
001046238 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b10$$kFZJ
001046238 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156341$$aForschungszentrum Jülich$$b11$$kFZJ
001046238 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001046238 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001046238 9141_ $$y2025
001046238 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
001046238 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046238 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIN TRANSL MED : 2022$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCLIN TRANSL MED : 2022$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-07$$wger
001046238 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:08:03Z
001046238 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:08:03Z
001046238 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046238 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001046238 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001046238 920__ $$lyes
001046238 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
001046238 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
001046238 980__ $$ajournal
001046238 980__ $$aVDB
001046238 980__ $$aUNRESTRICTED
001046238 980__ $$aI:(DE-Juel1)IBG-4-20200403
001046238 980__ $$aI:(DE-Juel1)IBI-7-20200312
001046238 9801_ $$aFullTexts