001     1046238
005     20250930132710.0
024 7 _ |a 10.1002/ctm2.70408
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03758
|2 datacite_doi
024 7 _ |a 40660744
|2 pmid
024 7 _ |a WOS:001528967100001
|2 WOS
037 _ _ |a FZJ-2025-03758
082 _ _ |a 610
100 1 _ |a Hesse, Robert
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The coming of age of DNA‐based catalysts for therapeutic applications
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758186948_24223
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a DNA enzymes, also known as DNAzymes (Dz), are synthetic high-precision biocatalysts that have been identified by in vitro selection three decades ago.1 Dz are usually short, single-stranded DNA molecules that catalyse chemical reactions through their specific three-dimensional structure.2 Due to their enormous therapeutic potential, particular interest has been invested in RNA-cleaving Dz, such as the 8–17 Dz and 10–23 Dz2. In general, these DNAzymes share a modular architecture comprising a (conserved) catalytic loop sequence and adaptable substrate binding arm sequences that, following specific design guidelines, can be modified to bind virtually any given target RNA with high selectivity.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gertzen, Christoph G. W.
|0 P:(DE-Juel1)174133
|b 1
700 1 _ |a Schmuck, Jessica Felice
|0 P:(DE-Juel1)194373
|b 2
700 1 _ |a Böcker, Justin Darvin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pandey, Piyush
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Behn, Tobias
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ruth, Christopher
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Riesner, Detlev
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kath-Schorr, Stephanie
|0 0000-0002-5180-360X
|b 8
|e Corresponding author
700 1 _ |a Lang, Philipp A.
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 10
|e Corresponding author
700 1 _ |a Etzkorn, Manuel
|0 P:(DE-Juel1)156341
|b 11
|e Corresponding author
773 _ _ |a 10.1002/ctm2.70408
|g Vol. 15, no. 7, p. e70408
|0 PERI:(DE-600)2697013-2
|n 7
|p e70408
|t Clinical and translational medicine
|v 15
|y 2025
|x 2001-1326
856 4 _ |u https://juser.fz-juelich.de/record/1046238/files/Clinical%20Translational%20Med%20-%202025%20-%20Hesse%20-%20The%20coming%20of%20age%20of%20DNA%E2%80%90based%20catalysts%20for%20therapeutic%20applications.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046238
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)194373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)172663
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)156341
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN TRANSL MED : 2022
|d 2025-01-07
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CLIN TRANSL MED : 2022
|d 2025-01-07
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:08:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:08:03Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21