001046494 001__ 1046494
001046494 005__ 20250924105311.0
001046494 0247_ $$2doi$$a10.1002/aenm.202503157
001046494 0247_ $$2ISSN$$a1614-6832
001046494 0247_ $$2ISSN$$a1614-6840
001046494 037__ $$aFZJ-2025-03833
001046494 041__ $$aEnglish
001046494 082__ $$a050
001046494 1001_ $$0P:(DE-Juel1)130252$$aHüpkes, Jürgen$$b0
001046494 245__ $$aImpact of Trap Depth on the Steady‐State and Transient Photoluminescence in Halide Perovskite Films
001046494 260__ $$aWeinheim$$bWiley-VCH$$c2025
001046494 3367_ $$2DRIVER$$aarticle
001046494 3367_ $$2DataCite$$aOutput Types/Journal article
001046494 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758636899_11548
001046494 3367_ $$2BibTeX$$aARTICLE
001046494 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046494 3367_ $$00$$2EndNote$$aJournal Article
001046494 500__ $$aOnlinefirst
001046494 520__ $$aWithin the field of halide perovskites, trap-assisted recombination is often considered to be synonymous with first-order recombination, that is, recombinationthat scales linearly with the charge-carrier concentration. However, the standard Shockley-Read-Hall statistics naturally predict that trap-assisted recombination can have any scaling between linear and quadratic with carrier density, depending on the position of the trap or defect that enables recombination. In an intrinsic semiconductor, the shallower a trap is, the more the recombination rate will scale quadratically with carrier density, and the more it will resemble radiative recombination in its behavior in any transient experiment. Here, the theoretical implications of the trap depth in general and shallow traps in particular on transient and steady-state experiments applied to halide perovskite samples for photovoltaic or optoelectronic applications are discussed.
001046494 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001046494 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x1
001046494 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046494 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b1
001046494 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b2$$eCorresponding author
001046494 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202503157$$gp. e03157$$pe03157$$tAdvanced energy materials$$v0$$x1614-6832$$y2025
001046494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130252$$aForschungszentrum Jülich$$b0$$kFZJ
001046494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b1$$kFZJ
001046494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b2$$kFZJ
001046494 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001046494 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1
001046494 9141_ $$y2025
001046494 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
001046494 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001046494 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2024-12-12
001046494 920__ $$lyes
001046494 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
001046494 9201_ $$0I:(DE-Juel1)IMD-3-20101013$$kIMD-3$$lPhotovoltaik$$x1
001046494 980__ $$ajournal
001046494 980__ $$aEDITORS
001046494 980__ $$aVDBINPRINT
001046494 980__ $$aI:(DE-Juel1)IEK-5-20101013
001046494 980__ $$aI:(DE-Juel1)IMD-3-20101013
001046494 980__ $$aUNRESTRICTED