001046508 001__ 1046508
001046508 005__ 20251007111505.0
001046508 0247_ $$2doi$$a10.1002/cite.70031
001046508 0247_ $$2ISSN$$a0009-286X
001046508 0247_ $$2ISSN$$a1522-2640
001046508 037__ $$aFZJ-2025-03847
001046508 041__ $$aEnglish
001046508 082__ $$a660
001046508 1001_ $$0P:(DE-Juel1)190785$$aTreutlein, Leander$$b0$$eCorresponding author
001046508 245__ $$aA Versatile Setup for Determining Hydrogen and Oxygen Crossover of Electrolyzer Membranes and MEAs
001046508 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2025
001046508 3367_ $$2DRIVER$$aarticle
001046508 3367_ $$2DataCite$$aOutput Types/Journal article
001046508 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759236948_11295
001046508 3367_ $$2BibTeX$$aARTICLE
001046508 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046508 3367_ $$00$$2EndNote$$aJournal Article
001046508 520__ $$aHydrogen and oxygen crossover in polymer electrolyte membrane (PEM) electrolyzers is critical for both operational safety and product gas purity. In this study, we present a versatile experimental setup designed to quantify gas crossover through membranes and polymers commonly used in PEM electrolyzers. A key feature of the setup is its ability to perform in situ measurements on fully assembled PEM cells, containing complete membrane electrode assemblies. The system also enables characterization of gas permeation through both wet and dry ionomers, as well as various polymers employed in components such as gaskets and tubing. These capabilities are demonstrated through a series of representative measurements that highlight the setup's flexibility and potential.
001046508 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001046508 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001046508 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046508 7001_ $$0P:(DE-Juel1)196699$$aJaved, Ali$$b1
001046508 7001_ $$0P:(DE-Juel1)200266$$aHilche, Tobias$$b2$$ufzj
001046508 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
001046508 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b4
001046508 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b5
001046508 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001046508 773__ $$0PERI:(DE-600)2035041-7$$a10.1002/cite.70031$$gp. cite.70031$$pcite.70031$$tChemie - Ingenieur - Technik$$vEarly View$$x0009-286X$$y2025
001046508 8564_ $$uhttps://doi.org/10.1002/cite.70031
001046508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190785$$aForschungszentrum Jülich$$b0$$kFZJ
001046508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196699$$aForschungszentrum Jülich$$b1$$kFZJ
001046508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200266$$aForschungszentrum Jülich$$b2$$kFZJ
001046508 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)200266$$aRWTH Aachen$$b2$$kRWTH
001046508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
001046508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b4$$kFZJ
001046508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b5$$kFZJ
001046508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001046508 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001046508 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001046508 9141_ $$y2025
001046508 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001046508 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-11$$wger
001046508 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM-ING-TECH : 2022$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001046508 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001046508 920__ $$lyes
001046508 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001046508 980__ $$ajournal
001046508 980__ $$aEDITORS
001046508 980__ $$aVDBINPRINT
001046508 980__ $$aI:(DE-Juel1)IET-1-20110218
001046508 980__ $$aUNRESTRICTED