001046553 001__ 1046553 001046553 005__ 20260113204518.0 001046553 0247_ $$2doi$$a10.18416/IJMPI.2025.2503005 001046553 037__ $$aFZJ-2025-03863 001046553 041__ $$aEnglish 001046553 082__ $$a500 001046553 1001_ $$0P:(DE-Juel1)190282$$aBikulov, Timur$$b0$$eCorresponding author$$ufzj 001046553 1112_ $$aInternational Workshop on Magnetic Particle Imaging$$cLübeck$$d2025-03-17 - 2025-03-19$$gIWMPI$$wGermany 001046553 245__ $$aDual-frequency MPS enables direct MNP size reconstruction: Verification with micromagnetic simulation dataInternational Journal on Magnetic Particle Imaging IJMPI 001046553 260__ $$aLübeck$$bInfinite Science Publishing$$c2025 001046553 3367_ $$2DRIVER$$aarticle 001046553 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib 001046553 3367_ $$2DataCite$$aOutput Types/Journal article 001046553 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768316343_19290 001046553 3367_ $$2BibTeX$$aARTICLE 001046553 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001046553 3367_ $$00$$2EndNote$$aJournal Article 001046553 520__ $$aMagnetic Particle Spectroscopy (MPS) allows for direct characterization of magneto-physical properties of magnetic nanoparticles (MNP), which are widely researched as imaging tracers, biosensing units and therapeutic heating agents. All these applications rely primarily on the core size-dependent magnetic particle relaxation dynamics. Therefore, knowledge about core size of any MNP sample is crucial. Dual-frequency MPS increases the characterization potential by considering frequency mixing terms of the received signal of MNP, from which their sizes can be approximated. In this work, preliminary feasibility and interpretation of a proposed size reconstruction method is tested against precisely simulated input data from stochastically coupled Néel-Brownian relaxation modeling using Monte Carlo implementation. 001046553 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0 001046553 588__ $$aDataset connected to DataCite 001046553 650_7 $$2Other$$adual-frequency 001046553 650_7 $$2Other$$amagnetic moment distribution 001046553 650_7 $$2Other$$aMonte-Carlo 001046553 650_7 $$2Other$$anonlinear magnetization 001046553 7001_ $$00009-0003-7043-8606$$aAbbas, Mohamad-Bilal$$b1 001046553 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b2 001046553 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b3 001046553 7001_ $$00000-0001-9250-1686$$aEngelmann, Ulrich$$b4 001046553 773__ $$0PERI:(DE-600)2893231-6$$a10.18416/IJMPI.2025.2503005$$n1$$p2503005$$tInternational journal on magnetic particle imaging$$v11$$x2365-9033$$y2025 001046553 8564_ $$uhttps://juser.fz-juelich.de/record/1046553/files/Paper.pdf$$yRestricted 001046553 909CO $$ooai:juser.fz-juelich.de:1046553$$pVDB 001046553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190282$$aForschungszentrum Jülich$$b0$$kFZJ 001046553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b2$$kFZJ 001046553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b3$$kFZJ 001046553 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 001046553 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01 001046553 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01 001046553 920__ $$lyes 001046553 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0 001046553 980__ $$ajournal 001046553 980__ $$aVDB 001046553 980__ $$acontrib 001046553 980__ $$aI:(DE-Juel1)IBI-3-20200312 001046553 980__ $$aUNRESTRICTED