001047179 001__ 1047179
001047179 005__ 20251015090049.0
001047179 0247_ $$2doi$$ahttps://doi.org/10.1002/cmtd.202500087
001047179 037__ $$aFZJ-2025-04136
001047179 082__ $$a540
001047179 1001_ $$0P:(DE-Juel1)199027$$aAdeleh, Sara$$b0$$eCorresponding author$$ufzj
001047179 245__ $$aSynthesis of Micro 14C-Labeled Polylactide forEnvironmental Assessment Analysis
001047179 260__ $$aWeinheim (Germany)$$bWiley-VCH$$c2025
001047179 3367_ $$2DRIVER$$aarticle
001047179 3367_ $$2DataCite$$aOutput Types/Journal article
001047179 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1760511632_23602
001047179 3367_ $$2BibTeX$$aARTICLE
001047179 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047179 3367_ $$00$$2EndNote$$aJournal Article
001047179 520__ $$aPolylactide (PLA), a biobased, biodegradable polyester derived from lactic acid, is recognized as an alternative to conventional plastics due to properties such as mechanical strength and compostability. Despite widespread use in applications from medical devices to packaging, PLA degradation in the environment, particularly its breakdown into microplastics, raises concerns. Conventional analytical methods are inadequate for quantifying PLA degradation in environments. To address this, radio tracking techniques using carbon-14 have emerged as a reliable method for PLA decomposition studies. The first step is producing labeled polymers from suitable monomers. Ring-opening polymerization (ROP) of lactide is widely used for synthesizing PLA, but this approach faces challenges due to the limited availability and high cost of 14C-labeled precursors. We report the first use of a biocompatible zinc bisguanidine catalyst for the synthesis of 14C-lactide from 14C-lactic acid, enabling the production of 14C-PLA. The process involves dehydration and oligomer formation, followed by catalytic depolymerization to yield 14C-lactide, which is polymerized through ROP. Lactide production was optimized by comparing the toxic industrial catalyst tin(II) octanoate [Sn(Oct)2] with our catalyst, the latter ultimately used for 14C-lactide and 14C-PLA production. The resulting micro-14C-labeled PLA can be used to quantify degradation, assess environmental impact.
001047179 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001047179 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047179 7001_ $$0P:(DE-HGF)0$$aBecker, Tabea$$b1
001047179 7001_ $$0P:(DE-HGF)0$$aHerres-Pawlis, Sonja$$b2$$eCorresponding author
001047179 7001_ $$0P:(DE-HGF)0$$aBol, Roland$$b3
001047179 7001_ $$0P:(DE-Juel1)131817$$aDrewes, Birte$$b4$$ufzj
001047179 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b5$$ufzj
001047179 773__ $$0PERI:(DE-600)2972304-8$$ahttps://doi.org/10.1002/cmtd.202500087$$gp. e202500087$$pe202500087$$tChemistry methods$$v0$$x2628-9725$$y2025
001047179 8564_ $$uhttps://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202500087
001047179 8564_ $$uhttps://juser.fz-juelich.de/record/1047179/files/Chemistry%20Methods%20-%202025%20-%20Adeleh%20-%20Synthesis%20of%20Micro%2014C%E2%80%90Labeled%20Polylactide%20for%20Environmental%20Assessment%20Analysis.pdf$$yRestricted
001047179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199027$$aForschungszentrum Jülich$$b0$$kFZJ
001047179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131817$$aForschungszentrum Jülich$$b4$$kFZJ
001047179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich$$b5$$kFZJ
001047179 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001047179 9141_ $$y2025
001047179 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-16$$wger
001047179 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001047179 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001047179 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001047179 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001047179 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001047179 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-16
001047179 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001047179 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001047179 980__ $$ajournal
001047179 980__ $$aEDITORS
001047179 980__ $$aVDBINPRINT
001047179 980__ $$aI:(DE-Juel1)IBG-3-20101118
001047179 980__ $$aUNRESTRICTED