001047237 001__ 1047237
001047237 005__ 20251023202111.0
001047237 0247_ $$2doi$$a10.48550/arXiv.2510.11929
001047237 037__ $$aFZJ-2025-04169
001047237 1001_ $$0P:(DE-HGF)0$$aVentura-Macias, Emiliano$$b0$$eFirst author
001047237 245__ $$aBond-resolved STM with density-based methods
001047237 260__ $$barXiv$$c2025
001047237 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1761202400_20500
001047237 3367_ $$2ORCID$$aWORKING_PAPER
001047237 3367_ $$028$$2EndNote$$aElectronic Article
001047237 3367_ $$2DRIVER$$apreprint
001047237 3367_ $$2BibTeX$$aARTICLE
001047237 3367_ $$2DataCite$$aOutput Types/Working Paper
001047237 520__ $$aBond-resolved STM (BRSTM) is a recent technique that combines the advantages of scanning tunneling microscopy (STM) with the outstanding intramolecular resolution provided by non-contact atomic force microscopy (ncAFM) using a CO-functionalized tips, offering unique insights into molecular interactions at surfaces. In this work, we present a novel and easily implementable approach for simulating BRSTM images, which we have applied to reproduce new experimental BRSTM data of Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on Ag(111), obtained with unprecedented control of tip-sample separation ( 10~pm). Our method integrates the Full-Density-Based Model (FDBM) developed for High-Resolution Atomic Force Microscopy (HRAFM) with Chen's derivative approximation for tunneling channels, effectively capturing the contributions of both   and   channels, while accounting for the CO-tip deflection induced by probe-sample interactions. This approach accurately reproduces the experimental results for both PTCDA/Ag(111) and 1,5,9-trioxo-13-azatriangulene (TOAT)/Cu(111) systems, including intricate tip-sample distance-dependent features. Furthermore, we also demonstrate the important role of substrate-induced effects, which can modify molecular orbital occupation and the relaxation of the CO probe, resulting in distinct BRSTM image characteristics.
001047237 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001047237 588__ $$aDataset connected to DataCite
001047237 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001047237 650_7 $$2Other$$aInstrumentation and Detectors (physics.ins-det)
001047237 650_7 $$2Other$$aFOS: Physical sciences
001047237 7001_ $$0P:(DE-HGF)0$$aMartinez-Castro, Jose$$b1
001047237 7001_ $$0P:(DE-HGF)0$$aHaas, Guillermo$$b2
001047237 7001_ $$0P:(DE-HGF)0$$aTrujillo-Mulero, Jara$$b3
001047237 7001_ $$0P:(DE-HGF)0$$aPou, Pablo$$b4
001047237 7001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b5$$ufzj
001047237 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b6$$ufzj
001047237 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b7$$ufzj
001047237 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b8$$ufzj
001047237 7001_ $$0P:(DE-HGF)0$$aPérez, Rubén$$b9$$eCorresponding author
001047237 773__ $$a10.48550/arXiv.2510.11929
001047237 8564_ $$uhttps://www.arxiv.org/abs/2510.11929
001047237 909CO $$ooai:juser.fz-juelich.de:1047237$$pVDB
001047237 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
001047237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001047237 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001047237 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001047237 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
001047237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b5$$kFZJ
001047237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b6$$kFZJ
001047237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b7$$kFZJ
001047237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
001047237 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b9$$kExtern
001047237 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001047237 9141_ $$y2025
001047237 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001047237 980__ $$apreprint
001047237 980__ $$aVDB
001047237 980__ $$aI:(DE-Juel1)PGI-3-20110106
001047237 980__ $$aUNRESTRICTED