Preprint FZJ-2025-04169

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Bond-resolved STM with density-based methods

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2025

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Bond-resolved STM (BRSTM) is a recent technique that combines the advantages of scanning tunneling microscopy (STM) with the outstanding intramolecular resolution provided by non-contact atomic force microscopy (ncAFM) using a CO-functionalized tips, offering unique insights into molecular interactions at surfaces. In this work, we present a novel and easily implementable approach for simulating BRSTM images, which we have applied to reproduce new experimental BRSTM data of Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on Ag(111), obtained with unprecedented control of tip-sample separation ( 10~pm). Our method integrates the Full-Density-Based Model (FDBM) developed for High-Resolution Atomic Force Microscopy (HRAFM) with Chen's derivative approximation for tunneling channels, effectively capturing the contributions of both and channels, while accounting for the CO-tip deflection induced by probe-sample interactions. This approach accurately reproduces the experimental results for both PTCDA/Ag(111) and 1,5,9-trioxo-13-azatriangulene (TOAT)/Cu(111) systems, including intricate tip-sample distance-dependent features. Furthermore, we also demonstrate the important role of substrate-induced effects, which can modify molecular orbital occupation and the relaxation of the CO probe, resulting in distinct BRSTM image characteristics.


Contributing Institute(s):
  1. Quantum Nanoscience (PGI-3)
Research Program(s):
  1. 5213 - Quantum Nanoscience (POF4-521) (POF4-521)

Click to display QR Code for this record
 Record created 2025-10-16, last modified 2025-10-16


External link:
Download fulltext
Fulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)