001047274 001__ 1047274
001047274 005__ 20251107145125.0
001047274 037__ $$aFZJ-2025-04195
001047274 041__ $$aEnglish
001047274 1001_ $$0P:(DE-Juel1)170099$$aHader, Fabian$$b0$$eCorresponding author$$ufzj
001047274 1112_ $$aAdvances in Automation of Quantum Dot Devices Control$$cLos Angeles$$d2025-10-05 - 2025-10-05$$gAQD$$wUSA
001047274 245__ $$aTowards Scalable Robust Charge Transition Detection for Quantum Dot Devices
001047274 260__ $$c2025
001047274 3367_ $$033$$2EndNote$$aConference Paper
001047274 3367_ $$2DataCite$$aOther
001047274 3367_ $$2BibTeX$$aINPROCEEDINGS
001047274 3367_ $$2DRIVER$$aconferenceObject
001047274 3367_ $$2ORCID$$aLECTURE_SPEECH
001047274 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1762522804_28393$$xAfter Call
001047274 520__ $$aReliable detection of charge transitions in charge stability diagrams (CSDs) is a key requirement for the full automation of quantum dot device control. Performing this task directly at the cryogenic stage reduces data transfer and supports scalability. To provide the large labeled datasets required for developing and evaluating detection methods, we introduced SimCATS [1], a simulator that generates realistic CSDs including sensor responses and distortions. We optimize both traditional and machine-learning-based detection methods using simulated data and benchmark them on simulated and experimental measurements from GaAs and SiGe qubit devices. We also investigate the potential of model compression and find its performance closely tied to task complexity, which can be alleviated by sensor dot compensation. In fact, we find that sensor compensation allows machine-learning approaches to be reduced in size by up to two orders of magnitude while maintaining, or even improving, detection quality. Together with high-quality measurements, this enables robust and scalable (ray-based) charge transition detection. Finally, we estimate the cryogenic power budget for applying this approach to large-scale systems with up to one million qubits. <br>[1] F. Hader et al., "Simulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS)", IEEE Transactions on Quantum Engineering, DOI: 10.1109/TQE.2024.3445967 (2024).
001047274 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001047274 7001_ $$0P:(DE-Juel1)176540$$aFuchs, Fabian$$b1
001047274 7001_ $$0P:(DE-Juel1)173094$$aFleitmann, Sarah$$b2$$ufzj
001047274 7001_ $$0P:(DE-Juel1)201385$$aHavemann, Karin$$b3$$ufzj
001047274 7001_ $$0P:(DE-Juel1)173093$$aScherer, Benedikt$$b4$$ufzj
001047274 7001_ $$0P:(DE-Juel1)133952$$aVogelbruch, Jan-Friedrich$$b5$$ufzj
001047274 7001_ $$0P:(DE-Juel1)172767$$aHumpohl, Simon$$b6
001047274 7001_ $$0P:(DE-HGF)0$$aHangleiter, Tobias$$b7
001047274 7001_ $$0P:(DE-Juel1)180702$$aHuckemann, Till$$b8$$ufzj
001047274 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b9$$ufzj
001047274 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b10$$ufzj
001047274 8564_ $$uhttps://juser.fz-juelich.de/record/1047274/files/Hader-TowardsScalableRobustChargeTransitionDetectionForQuantumDotDevices.pdf$$yRestricted
001047274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170099$$aForschungszentrum Jülich$$b0$$kFZJ
001047274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173094$$aForschungszentrum Jülich$$b2$$kFZJ
001047274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201385$$aForschungszentrum Jülich$$b3$$kFZJ
001047274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173093$$aForschungszentrum Jülich$$b4$$kFZJ
001047274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133952$$aForschungszentrum Jülich$$b5$$kFZJ
001047274 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b7$$kRWTH
001047274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180702$$aForschungszentrum Jülich$$b8$$kFZJ
001047274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b9$$kFZJ
001047274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b10$$kFZJ
001047274 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001047274 9141_ $$y2025
001047274 920__ $$lyes
001047274 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0
001047274 980__ $$aconf
001047274 980__ $$aEDITORS
001047274 980__ $$aVDBINPRINT
001047274 980__ $$aI:(DE-Juel1)PGI-4-20110106
001047274 980__ $$aUNRESTRICTED