% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Shimoura:1047386,
author = {Shimoura, Renan},
title = {{M}ulti-{A}rea {C}ortical {M}odels: {B}ridging {S}tructure
and {D}ynamics in {L}arge-{S}cale {S}piking {N}etworks},
reportid = {FZJ-2025-04272},
year = {2025},
note = {References: [1] Schmidt, M., Bakker, R., Hilgetag, C. C.,
Diesmann, M., $\&$ van Albada, S. J. (2018). Multi-scale
account of the network structure of macaque visual cortex.
Brain Structure $\&$ Function, 223(3), 1409–1435. [2]
Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M.,
$\&$ van Albada, S. J. (2018). A multi-scale layer-resolved
spiking network model of resting-state dynamics in macaque
visual cortical areas. PLoS Computational Biology, 14(10),
e1006359. [3] Pronold, J., van Meegen, A., Shimoura, R. O.,
Vollenbröker, H., Senden, M., Hilgetag, C. C., Bakker, R.,
$\&$ van Albada, S. J. (2024). Multi-scale spiking network
model of human cerebral cortex. Cerebral Cortex, 34(10),
bhae409. [4] Pronold, J., Morales-Gregorio, A., Rostami, V.,
$\&$ van Albada, S. J. (2024). Cortical multi-area model
with joint excitatory-inhibitory clusters accounts for
spiking statistics, inter-area propagation, and variability
dynamics. bioRxiv.},
abstract = {In recent years, we have developed multiscale spiking
networks that bridge local circuits and cortical areas, as
illustrated by the macaque visual cortex [1, 2] and the
human cerebral cortex models [3]. These models serve as
platforms for linking anatomical structure to emergent
network dynamics. For instance, in Pronold et al. [4], we
extended the macaque multi-area model by implementing joint
excitatory-inhibitory (EI) clustering. This clustered
architecture adjusts resting-state spiking activity
statistics, supports robust signal propagation across the
hierarchy, and reproduces the experimentally observed
reduction of neural variability upon stimulation. However,
scaling into this structure poses a significant
computational bottleneck, causing network construction time
in the NEST simulator to increase substantially (e.g., from
one minute to several hours for 50 clusters). To address
this initialization challenge, strategies include code
refactoring and developing specialized connection routines
within the core NEST framework. The NEST-GPU platform
presents a potential alternative for assessing new network
initialization strategies. Additionally, it may offer an
effective environment for accelerating the simulation
dynamics of these massive networks at full scale.},
month = {Oct},
date = {2025-10-08},
organization = {NEST GPU Workshop, Cagliari (Italy), 8
Oct 2025 - 15 Oct 2025},
subtyp = {Invited},
cin = {IAS-6},
cid = {I:(DE-Juel1)IAS-6-20130828},
pnm = {5231 - Neuroscientific Foundations (POF4-523) / DFG project
G:(GEPRIS)347572269 - Heterogenität von Zytoarchitektur,
Chemoarchitektur und Konnektivität in einem großskaligen
Computermodell der menschlichen Großhirnrinde (347572269) /
HBP SGA3 - Human Brain Project Specific Grant Agreement 3
(945539) / Brain-Scale Simulations $(jinb33_20220812)$ /
EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to
Advance Neuroscience and Brain Health (101147319) / JL SMHB
- Joint Lab Supercomputing and Modeling for the Human Brain
(JL SMHB-2021-2027)},
pid = {G:(DE-HGF)POF4-5231 / G:(GEPRIS)347572269 /
G:(EU-Grant)945539 / $G:(DE-Juel1)jinb33_20220812$ /
G:(EU-Grant)101147319 / G:(DE-Juel1)JL SMHB-2021-2027},
typ = {PUB:(DE-HGF)6},
url = {https://juser.fz-juelich.de/record/1047386},
}