001     1047620
005     20251106151208.0
024 7 _ |a 10.1007/s11666-025-02093-2
|2 doi
024 7 _ |a 1059-9630
|2 ISSN
024 7 _ |a 1544-1016
|2 ISSN
037 _ _ |a FZJ-2025-04420
082 _ _ |a 670
100 1 _ |a Schmitt, J.
|0 P:(DE-Juel1)188130
|b 0
|e Corresponding author
111 2 _ |a 2025 International Thermal Spray Conference
|g ITSC2025
|c Vancouver
|d 2025-05-05 - 2025-05-08
|w Canada
245 _ _ |a Investigation of the Process Stability and Effectiveness Using a Multi-Arc Spraying Torch with Axial Suspension Injection
260 _ _ |a Boston, Mass.
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762424020_6156
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC 4.0
520 _ _ |a The Axial IIITM torch is a multi-arc plasma generator equipped with three single cathode–anode units. It is widely used for suspension plasma spraying because of its axial feedstock injection. Previous work has shown that the plasma jet is not completely homogeneous, due to power fluctuations and the triple distribution of the plasma enthalpy. This could affect the stability and efficiency of the spraying process. Therefore, state-of-the-art process diagnostics were used to further characterize the process. The plasma characteristics were studied at three different compositions while spraying a 30% wt.% Y2O2 water-based suspension using two different nozzle geometries. Time-resolved measurements of voltages and currents were used to gain insight into the arc dynamics and the plasma-suspension interaction. The resulting in-flight particle temperatures and velocities were analyzed using the Accuraspray 4.0. The specific plasma gas composition, particularly the nitrogen content, affected the temperature and transport coefficients of the plasma and thus the particle characteristics. These factors, in turn, directly affected the deposition efficiency and the microstructure of the resulting coatings, as demonstrated by the experiments. Meanwhile, the overall process efficiency decreased for the nozzle with the reduced expansion ratio. This study provides the basis for deriving measures to improve the stability and efficiency of suspension plasma spraying.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)501838742 - Gezielte Verbesserung der Stabilität und Effizienz des Suspensionsplasmaspritzens mittels angepasster diagnostischer Methoden (501838742)
|0 G:(GEPRIS)501838742
|c 501838742
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zimmermann, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kirner, C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 3
|u fzj
700 1 _ |a Schein, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mauer, G.
|0 P:(DE-Juel1)129633
|b 5
|u fzj
773 _ _ |a 10.1007/s11666-025-02093-2
|0 PERI:(DE-600)2047715-6
|p TBD
|t Journal of thermal spray technology
|v TBD
|y 2025
|x 1059-9630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188130
910 1 _ |a Institute of Physics, University of the Bundeswehr Munich, Neubiberg, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
910 1 _ |a Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum, Germany
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)129670
910 1 _ |a Institute of Physics, University of the Bundeswehr Munich, Neubiberg, Germany
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129633
910 1 _ |a Department of Mechanical Engineering, Technische Universität Dortmund, Dortmund, Germany
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)129633
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J THERM SPRAY TECHN : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a contrib
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21