001047709 001__ 1047709
001047709 005__ 20251120202158.0
001047709 0247_ $$2doi$$a10.1073/pnas.2510085122
001047709 0247_ $$2ISSN$$a0027-8424
001047709 0247_ $$2ISSN$$a1091-6490
001047709 037__ $$aFZJ-2025-04475
001047709 082__ $$a500
001047709 1001_ $$0P:(DE-HGF)0$$aHirata, Keisuke$$b0
001047709 245__ $$aNeutron and time-resolved X-ray crystallography reveal the substrate recognition and catalytic mechanism of human Nudix hydrolase MTH1
001047709 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2025
001047709 3367_ $$2DRIVER$$aarticle
001047709 3367_ $$2DataCite$$aOutput Types/Journal article
001047709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763633384_26261
001047709 3367_ $$2BibTeX$$aARTICLE
001047709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047709 3367_ $$00$$2EndNote$$aJournal Article
001047709 520__ $$aHuman MutT homolog 1 (MTH1/NUDT1), which belongs to the nucleoside diphosphate-linked moiety X (Nudix) hydrolase family, hydrolyzes oxidized nucleotides such as 8-oxo-dGTP and 2-oxo-dATP by its broad substrate specificity. MTH1 also attracts attention as a target molecule in cancer treatment and the broad substrate recognition of MTH1 is of biological and medical interests. Previous studies suggested that MTH1 exhibits the broad substrate recognition by changing the protonation state of Asp119 and Asp120 with much higher pKa. However, the recognition mechanism is not fully understood due to the difficulty of directly observing hydrogen atoms. In addition, recent time-resolved X-ray study proposed that the Nudix hydrolases catalyze the reactions through a new three-metal-ion mechanism rather than the two-metal-ion mechanism previously suggested. To understand the substrate recognition and catalytic mechanism of human MTH1, we have performed neutron and time-resolved X-ray crystallography. Neutron crystallography has visualized the protonation states of the active site residues, substrates, and water molecules which are crucial for the substrate-binding and catalysis, providing direct experimental evidence that the change in the protonation state of Asp119 and Asp120 is essential for the broad substrate recognition of MTH1. Time-resolved X-ray crystallography has visualized a whole reaction process catalyzed by MTH1 through three Mn2+ ions. Combination of neutron and time-resolved X-ray crystallography has proposed a three-metal-ion mechanism of MTH1 including nucleophilic substitution by a water molecule and its possible deprotonation pathway. The three-metal-ion mechanism would be a general feature in the catalytic reactions of the Nudix hydrolases.
001047709 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001047709 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001047709 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047709 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
001047709 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
001047709 693__ $$0EXP:(DE-MLZ)BIODIFF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)BIODIFF-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eBIODIFF: Diffractometer for large unit cells$$fNL1$$x0
001047709 7001_ $$0P:(DE-HGF)0$$aFujimiya, Kana$$b1
001047709 7001_ $$00000-0002-1477-5590$$aOstermann, Andreas$$b2
001047709 7001_ $$0P:(DE-Juel1)138266$$aSchrader, Tobias E.$$b3
001047709 7001_ $$00000-0002-8410-5111$$aHiromoto, Takeshi$$b4
001047709 7001_ $$0P:(DE-HGF)0$$aGoto, Masataka$$b5
001047709 7001_ $$00000-0002-6063-5572$$aArimori, Takao$$b6
001047709 7001_ $$00000-0002-3007-6052$$aHirano, Yu$$b7
001047709 7001_ $$0P:(DE-HGF)0$$aKusaka, Katsuhiro$$b8
001047709 7001_ $$00000-0003-1419-8022$$aTamada, Taro$$b9
001047709 7001_ $$00000-0003-2013-3057$$aNakamura, Teruya$$b10$$eCorresponding author
001047709 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2510085122$$gVol. 122, no. 29, p. e2510085122$$n29$$pe2510085122$$tProceedings of the National Academy of Sciences of the United States of America$$v122$$x0027-8424$$y2025
001047709 8564_ $$uhttps://juser.fz-juelich.de/record/1047709/files/hirata-et-al-2025-neutron-and-time-resolved-x-ray-crystallography-reveal-the-substrate-recognition-and-catalytic.pdf$$yRestricted
001047709 909CO $$ooai:juser.fz-juelich.de:1047709$$pVDB:MLZ$$pVDB
001047709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138266$$aForschungszentrum Jülich$$b3$$kFZJ
001047709 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001047709 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001047709 9141_ $$y2025
001047709 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
001047709 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001047709 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001047709 920__ $$lyes
001047709 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001047709 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001047709 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
001047709 980__ $$ajournal
001047709 980__ $$aVDB
001047709 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001047709 980__ $$aI:(DE-588b)4597118-3
001047709 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001047709 980__ $$aUNRESTRICTED