Journal Article FZJ-2025-04475

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Neutron and time-resolved X-ray crystallography reveal the substrate recognition and catalytic mechanism of human Nudix hydrolase MTH1

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
National Acad. of Sciences Washington, DC

Proceedings of the National Academy of Sciences of the United States of America 122(29), e2510085122 () [10.1073/pnas.2510085122]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Human MutT homolog 1 (MTH1/NUDT1), which belongs to the nucleoside diphosphate-linked moiety X (Nudix) hydrolase family, hydrolyzes oxidized nucleotides such as 8-oxo-dGTP and 2-oxo-dATP by its broad substrate specificity. MTH1 also attracts attention as a target molecule in cancer treatment and the broad substrate recognition of MTH1 is of biological and medical interests. Previous studies suggested that MTH1 exhibits the broad substrate recognition by changing the protonation state of Asp119 and Asp120 with much higher pKa. However, the recognition mechanism is not fully understood due to the difficulty of directly observing hydrogen atoms. In addition, recent time-resolved X-ray study proposed that the Nudix hydrolases catalyze the reactions through a new three-metal-ion mechanism rather than the two-metal-ion mechanism previously suggested. To understand the substrate recognition and catalytic mechanism of human MTH1, we have performed neutron and time-resolved X-ray crystallography. Neutron crystallography has visualized the protonation states of the active site residues, substrates, and water molecules which are crucial for the substrate-binding and catalysis, providing direct experimental evidence that the change in the protonation state of Asp119 and Asp120 is essential for the broad substrate recognition of MTH1. Time-resolved X-ray crystallography has visualized a whole reaction process catalyzed by MTH1 through three Mn2+ ions. Combination of neutron and time-resolved X-ray crystallography has proposed a three-metal-ion mechanism of MTH1 including nucleophilic substitution by a water molecule and its possible deprotonation pathway. The three-metal-ion mechanism would be a general feature in the catalytic reactions of the Nudix hydrolases.

Keyword(s): Health and Life (1st) ; Biology (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. Heinz Maier-Leibnitz Zentrum (MLZ)
  3. JCNS-4 (JCNS-4)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)
  2. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
Experiment(s):
  1. BIODIFF: Diffractometer for large unit cells (NL1)

Appears in the scientific report 2025
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 10 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-4
Workflow collections > Public records
Publications database

 Record created 2025-11-11, last modified 2025-11-20


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)