001048781 001__ 1048781
001048781 005__ 20251204202145.0
001048781 037__ $$aFZJ-2025-04896
001048781 041__ $$aEnglish
001048781 1001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b0$$eCorresponding author$$ufzj
001048781 1112_ $$a9th BigBrain Workshop - HIBALL Closing Symposium$$cBerlin$$d2025-10-27 - 2025-10-29$$wGermany
001048781 245__ $$aCytoNet: A Foundation Model for the Human Cerebral Cortex - Applications in BigBrain and Beyond
001048781 260__ $$c2025
001048781 3367_ $$033$$2EndNote$$aConference Paper
001048781 3367_ $$2DataCite$$aOther
001048781 3367_ $$2BibTeX$$aINPROCEEDINGS
001048781 3367_ $$2DRIVER$$aconferenceObject
001048781 3367_ $$2ORCID$$aLECTURE_SPEECH
001048781 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1764849837_30831$$xAfter Call
001048781 520__ $$aCytoNet: A Foundation Model for the Human Cerebral Cortex - Applications in BigBrain and Beyond 28 Oct 2025, 12:00 15m Langenbeck-Virchow-HausTalk Session 1: Multiscale Data Integration & AI-based ProcessingSpeaker Christian Schiffer (Forschungszentrum Jülich)DescriptionMicroscopic analysis of cytoarchitecture in the human cerebral cortex is essential for understanding the anatomical basis of brain function. We present CytoNet, a foundation model that encodes high-resolution microscopic image patches into expressive feature representations suitable for whole-brain analysis. CytoNet leverages the spatial relationship between anatomical proximity and microstructural similarity to learn biologically meaningful features using self-supervised learning, without the need for manual annotations. The learned features are consistent across regions and subjects, can be computed at arbitrarily dense sampling locations, and support a wide range of neuroscientific analyses. We demonstrate state-of-the-art performance for brain area classification, cortical layer segmentation, morphological parameter estimation, and unsupervised parcellation. As a foundation model, CytoNet provides a unified representation of cortical microarchitecture and establishes a basis for comprehensive analyses of cytoarchitecture and its relationship to other structural and functional principles at the whole-brain level.
001048781 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001048781 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001048781 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
001048781 536__ $$0G:(DE-Juel-1)E.40401.62$$aHelmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)$$cE.40401.62$$x3
001048781 536__ $$0G:(DE-HGF)ZT-I-PF-4-061$$aX-BRAIN (ZT-I-PF-4-061)$$cZT-I-PF-4-061$$x4
001048781 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x5
001048781 7001_ $$0P:(DE-Juel1)167110$$aSpitzer, Hannah$$b1
001048781 7001_ $$0P:(DE-Juel1)171152$$aKropp, Jan-Oliver$$b2$$ufzj
001048781 7001_ $$0P:(DE-Juel1)132488$$aThönnissen, Andre$$b3$$ufzj
001048781 7001_ $$0P:(DE-HGF)0$$aBerr, Katja$$b4
001048781 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b5$$ufzj
001048781 7001_ $$0P:(DE-Juel1)198947$$aBoztoprak, Zeynep$$b6$$ufzj
001048781 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b7$$ufzj
001048781 8564_ $$uhttps://events.hifis.net/event/2171/contributions/19159/
001048781 909CO $$ooai:juser.fz-juelich.de:1048781$$pVDB
001048781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b0$$kFZJ
001048781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171152$$aForschungszentrum Jülich$$b2$$kFZJ
001048781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132488$$aForschungszentrum Jülich$$b3$$kFZJ
001048781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b5$$kFZJ
001048781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198947$$aForschungszentrum Jülich$$b6$$kFZJ
001048781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b7$$kFZJ
001048781 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001048781 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001048781 9141_ $$y2025
001048781 920__ $$lyes
001048781 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001048781 980__ $$aconf
001048781 980__ $$aVDB
001048781 980__ $$aI:(DE-Juel1)INM-1-20090406
001048781 980__ $$aUNRESTRICTED